Structure-Based Design and Synthesis of Macroheterocyclic Peptidomimetic Inhibitors of the Aspartic Protease $\boldsymbol{\beta}$-Site Amyloid Precursor Protein Cleaving Enzyme (BACE)

Stephen Hanessian, ${ }^{*, \dagger}$ Gaoqiang Yang, ${ }^{\dagger}$ Jean-Michel Rondeau, ${ }^{\ddagger}$ Ulf Neumann, ${ }^{\ddagger}$ Claudia Betschart, ${ }^{\dagger}$ and Marina Tintelnot-Blomley*
Department of Chemistry, Université de Montréal, C. P. 6128, Station Centre-ville, Montréal, Quebec H3C 3J7, Canada, and Novartis Institutes for BioMedical Research, Novartis Pharma AG, Postfach, CH-4002 Basel, Switzerland

Received February 10, 2006

Abstract

Based on the X-ray cocrystal structure of the Tang-Ghosh heptapeptide inhibitor 1 (OM00-3), a series of macroheterocyclic analogues were designed and synthesized. Analogues containing dithia, dioxa, oxathia, and carbathia macrocycles were synthesized by methods relying on ring-closing olefin metathesis for the dioxa analogues and by alkylation of thiolates or bisthiolates for the others. Molecular modeling suggested that the incorporation of piperidine units appended to the macrocycles improved interactions through additional H -bonds and introduced further rigidity. These were synthesized in enantiomerically pure form using enzymecatalyzed desymmetrization and diastereomer separation. Inhibitory activity on β-site amyloid precursor protein cleaving enzyme (BACE) was observed with several macroheterocyclic inhibitors and structureactivity relationship (SAR) correlations were deduced. Cocrystal structures of two synthetic analogues revealed interesting and unexpected binding interactions.

Introduction

There is substantial evidence that β-amyloid plays an important role in the pathogenesis of Alzheimer's Disease. The generation of this short peptide is initiated by cleavage of a larger precursor protein by the aspartic protease BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase). BACE is therefore recognized as one of the most promising targets for a disease-modifying treatment of Alzheimer's Disease and many research efforts are aiming at the identification of suitable inhibitors as drug candidates. ${ }^{1}$

Although in drug discovery the ultimate goal usually is to identify non-peptidic inhibitors, very often the first step in the process toward such a compound is through substrate analogues. It is well established that protease substrates have to adopt an extended β-strand conformation to be recognized and cleaved by the enzyme. ${ }^{2}$ Accordingly, such protease inhibitors are designed to mimic essential features of peptides in β-strand conformations. Macrocyclization is an established method to pre-organize and stabilize this bioactive conformation. ${ }^{3}$ It has been applied successfully for a number of proteases, in particular aspartic proteases. In many cases, the activity, cell permeability, oral availability, or proteolytic stability could be improved considerably compared with the open chain analogues. ${ }^{4}$

Only a limited number of macrocyclic inhibitors of BACE have been reported in the literature so far. A first paper reports on cycloamide-urethane-derived compounds linking the P_{2} and P_{4} moieties of a hydroxyethylene peptidomimetic inhibitor. ${ }^{5}$ The compounds were synthesized by ring-closing olefin metathesis, and in the best case, a gain in activity of approximately an order of magnitude was achieved by going from the open precursor to the ring-closed inhibitor. In addition, increased cellular activity was observed when compared with similar open-chain analogues. In a more recent publication, macrocyclic inhibitors linking P_{1} with either P_{3} or the nitrogen of the amide bond

[^0]between P_{2} and P_{3} are presented. ${ }^{6}$ In contrast to the first examples with linkers between functional groups in the hydrophilic S_{2} and S_{4} pockets, in this latter case, the linker consists of a pure carbon chain located in the hydrophobic S_{1} and S_{3} environment. Again, compared with similar open-chain analogues a slight improvement in activity was observed. In addition, cellular activity was achieved with the compounds linking the nitrogen of the amide bond between P_{2} and P_{3}. This is most likely due to better permeability gained by the elimination of a H -bond donor.

In this paper, we report on the design and synthesis of 15 - to 17-membered macrocyclic hydroxyethylene inhibitors where P_{1} and P_{3} are connected through thioether or ether linkages, as well as on novel bicyclic macrocycles encompassing a piperidine ring. Statin-derived bis-thioether macrocycles have been studied already as inhibitors of pepsin and penicillopepsin. ${ }^{7}$ Modeling and overlays with the published X-ray structure of $\mathbf{1}$ (OM00-3) suggested that this principle should also be applicable for inhibitors of BACE (Figure 1). Furthermore, novel bicyclic macrocycles containing a basic piperidine ring have been designed to pick up additional interactions with the enzyme.

Results and Discussion

Chemistry. For the synthesis of the dioxa O / O macrocycles, we relied on the now venerable Grubbs olefin metathesis reaction ${ }^{8}$ of appropriately spaced bis- O-allyl intermediates as shown in a disconnective analysis in Figure 2. We had also hoped that the mixed oxathia macrocycles could be prepared by such a carbocyclization. However, after initial exploratory studies, it became evident that the synthesis of the dithia variants would require a different methodology due to the incompatibility of the Grubbs reagent with the presence of two thioether-type groups. The bis- O-allyl and bis- O, S-allyl ether intermediates would be generated from appropriate hydroxymethyl amino acids such as serine or cysteine for the P_{2} site, and a new δ-hydroxymethyl- δ-amino acid. The latter would originate from the versatile Garner's aldehyde. ${ }^{9}$

Addition of the organozinc acetylide, prepared from methyl propiolate to 1 at $-78{ }^{\circ} \mathrm{C}$ afforded the desired 2 (57\%) and its

Figure 1. (A) Tang-Ghosh BACE inhibitors 1 (OM00-3) and (B) proposed heteromacrocyclic pseudopeptidomimetic.

Figure 2. Disconnective analysis of the heteromacrocyclic pseudopeptides.

4-epimer 3 (5\%) (Scheme 1). Although zinc acetylides have been added to Garner's aldehyde and the corresponding Lcysteine variant, the analogous reaction with methyl propiolate with a favorable stereochemical ratio is, to the best of our knowledge, unprecedented. After a number of conditions involving bases and additives were explored, the best ratio of $12: 1$ in favor of 2 was obtained with $n-\mathrm{BuLi} / \mathrm{ZnBr}_{2}\left(\right.$ or $\left.\mathrm{ZnCl}_{2}\right)$ in ether. Catalytic reduction of 2 led to the saturated ester 4. The minor isomer $\mathbf{3}$ could be oxidized to the acetylenic ketone, the triple bond could be reduced to $\mathbf{5}$, and the resulting compound could be subsequently treated with sodium borohydride in methanol to give 4 . Treatment of 4 with AcOH in toluene at reflux temperature afforded the lactone $\mathbf{6}$, which was alkylated via the lithium enolate to give 7 in 70% yield as a single isomer. Cleavage of the acetal to $\mathbf{8}$ and O-allylation using allyltrichloroacetimidate and triflic acid ${ }^{10,11}$ gave the lactone 9 in excellent overall yield. Treatment of 9 with butylamine effected ring opening to give the butylamide $\mathbf{1 0}$.

Cleavage of the N-Boc group and coupling with Boc-AlaOH in the presence of PyBOP gave the dipeptide $\mathbf{1 1}$ in 85% yield. Further extension with Boc-Ser(allyl)-OH led to the bis-O-allyl precursor 12 in 67% yield. Attempted carbocyclization with the Grubbs first generation catalyst ${ }^{12}$ did not lead to any

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) BuLi, methyl propiolate, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, then $\mathrm{ZnBr}_{2}, \mathrm{Et}_{2} \mathrm{O},-78-0^{\circ} \mathrm{C}$, then Garner's aldehyde, 62%; (b) $\mathrm{Pd} / \mathrm{C} /$ $\mathrm{BaSO}_{4}, \mathrm{H}_{2}, \mathrm{AcOEt}, 95 \%$; (c) (i) Dess-Martin periodinane, 75%, (ii) Pd / C, $\mathrm{H}_{2}, 96 \%$; (d) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 85 \%$; (e) AcOH , toluene, 95%; (f) LiHMDS, THF, then MeI, 70%, (g) TsOH, THF- $\mathrm{H}_{2} \mathrm{O}, 75 \%$; (h) allyl trichloroacetimidate, $\mathrm{TfOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; (i) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}, 40 \%$; (j) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N-Boc-Ala, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; (k) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N-Boc-O-allyl-SerOH, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 67 \%$ for 12; N -Boc- S -allyl-Cys, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$ for 13; N-Ac- S -allyl-Cys, HOBt , EDC, DCM$\mathrm{H}_{2} \mathrm{O}, 27 \%$ for $\mathbf{1 4}$; (1) Grubbs second generation catalyst $20-30 \mathrm{~mol} \%$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 34 \%$ for $\mathbf{1 5}, 25 \%$ for $\mathbf{1 7}, 23 \%$ for $\mathbf{1 8}$; (m) Pd/C, $\mathrm{H}_{2}, 91 \%$.
desired product. However, using the second generation catalyst ${ }^{13,14}$ ($20 \mathrm{~mol} \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the dioxa- O / O macrocycle 15 as an inseparable mixture of cis and trans isomers in 34% yield. Catalytic reduction led to the saturated macrocycle $\mathbf{1 6}$ in 91% yield.

The oxathia macrocycle was synthesized via the same protocol (Scheme 1). Thus, coupling of the amine from 11 with Boc-Cys(allyl)-OH proceeded smoothly to give the bis- O, S-allyl dipeptide $\mathbf{1 3}$ in $\mathbf{7 5 \%}$ yield. Carbocyclization via ring closure

Scheme $\mathbf{2}^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{BnSH}, \mathrm{PMe}_{3}, \mathrm{ADDP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 66 \%$; (b) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}, \mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; (c) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N-Boc-Ala, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; (d) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N-Boc- S-Bn-Cys, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 57 \%$; (e) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), then $\mathrm{BrCH}_{2}-\mathrm{R}-\mathrm{CH}_{2} \mathrm{Br}$; (f) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) $\mathrm{Ac}_{2} \mathrm{O}$, DMF, NaHCO_{3}.
metathesis of $\mathbf{1 3}$ using the second generation Grubbs catalyst ($30 \mathrm{~mol} \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{13,14}$ afforded the desired oxathia macrocycle 17 as a mixture of cis and trans isomers in 25% yield. To explore the influence of the N-terminal group, we also prepared the N-acetyl macrocycle 18 from acyclic precursor 14. Attempts to improve the yields of these carbocyclizations by variation of catalyst load or concentration were not successful.

We next turned our attention to the dithia macrocycles. Since the Grubbs macrocylization of bis-S-allyl precursors corresponding to $\mathbf{1 3}$ was not possible, presumably due to the strong coordination with the catalyst, we adopted a macrocyclization protocol based on an intramolecular bis-thioetherification with appropriate dibromides and a bis-thiolate. ${ }^{7,15-17}$ By varying the length of the dibromoalkenes and alkanes, we envisaged the preparation of dithia macrocycles having 15-17-membered pseudopeptide rings. Rather than utilize the L-cysteine equivalent of the Garner aldehyde ${ }^{18}$ and to reinvestigate stereocontrolled routes to the corresponding acetylenic ester similar to 2 , we chose to use the advanced intermediate from the previous route (Scheme 1) and to introduce a benzylthio group via a Mitsunobu reaction (Scheme 2). ${ }^{19}$ Thus, treatment of $\mathbf{8}$ with benzyl mercaptan, in the presence of trimethylphosphine and ADDP (azodicarbonyldipiperidine), ${ }^{20}$ led to the corresponding benzylthio analogue 19 in 66% yield. Ring opening to the acyclic butylamide 20, followed by peptide coupling with Boc-Cys(Bn)-OH gave the bis-benzylthio dipeptide 22 in 57% yield. Reductive cleavage with $\mathrm{Na} / \mathrm{NH}_{3}$ (liquid), ${ }^{21}$ and treatment of

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) 3-benzylsulfanyl
propionic acid, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$; (b) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), cis-1,4-
dibromobutene, 51%; (c) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), trans-1,4-dibromobutene, 45%.
the resulting bis-thiolate with a variety of dibromides gave the corresponding dithia macrocycles $\mathbf{2 3} \mathbf{- 2 8}$ in modest to good yields depending on the nature of the products. Four analogues were also deprotected to the amines, which were converted to the corresponding N-acetyl variants 29-32 by acetylation with acetic anhydride.

To probe the interactions of the $\mathrm{P}_{3}-\mathrm{P}_{4}$ amide, we deemed it necessary to synthesize dithia macrocycles with cis- and transalkene bridges but lacking the terminal N -Boc or N -Ac group (Scheme 3). The common intermediate 19 was cleaved to the amine then coupled with Boc-Ala-OH as usual. Further extension with 3-S-benzylpropionic acid gave the bis-S-benzyl dipeptide 33. Reductive cleavage of the benzyl groups and bisalkylation with cis-1,4-dibromobutene and trans-1,4-dibromobutene gave the corresponding dithia macrocycles 34 and 35 in 51% and 45% yields, respectively.

Previous SAR data ${ }^{5,22-26}$ and preliminary results from our laboratory ${ }^{27-29}$ had shown a beneficial effect of a valine residue at P_{2}^{\prime} in inhibition experiments on BACE. We decided to synthesize an extended variant of $\mathbf{2 7}$ and $\mathbf{2 8}$, incorporating a valine residue and capping with a butylamide (Scheme 4). Thus, 19 was treated with aq LiOH , and the resulting Li^{+}carboxylate was carefully acidified to give the free carboxylic acid $\mathbf{3 6}$ in 91% overall yield. Coupling with H-Val- n-butyl in the presence of PyBOP gave the peptide 37 in 86% yield. Cleavage of the t-butyldimethylsilyl (TBS) group afforded the corresponding hydroxyl compound 38. A more expedient route was to treat the lactone 19 directly with H -Val-n-butyl in the presence of 2-hydroxypyridine and refluxing toluene ${ }^{30,31}$ to afford $\mathbf{3 8}$ in 66% yield. Extension to 39 and coupling with $\mathrm{Boc}-\mathrm{Cys}(\mathrm{Bn})-\mathrm{OH}$ gave 40 in excellent overall yield. Reductive cleavage and bisalkylation as described above gave the cis- and trans-dithia macrocycles 41 and $\mathbf{4 2}$ in 24% and 22% yields, respectively. Various attempts to increase the yields of bis-alkylations in this and related cases were unsuccessful.

The series of oxathia macrocycles and dithia macrocycles described above was tested for inhibition of BACE under standard conditions. ${ }^{32}$ Although little or only marginal inhibition was observed for the majority of the analogues, we found that the trans-dithia macrocycle 42 exhibited an IC_{50} of 156 nM against BACE. However, the isomeric cis macrocycle 41 showed 10 -fold weaker activity. The X-ray structure of $\mathbf{4 2}$ in a complex with human BACE was solved at a resolution of $2.10 \AA$ (see Discussion).

Scheme 4^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{LiOH}, \mathrm{DME}-\mathrm{H}_{2} \mathrm{O}$, (ii) TBSCl , imidazole, THF, 91% for two steps; (b) Val- $\mathrm{N}^{n} \mathrm{n}$ Bu, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 86%; (c) $\mathrm{TsOH}, \mathrm{MeOH}, 50 \%$; (d) $\mathrm{Val}-\mathrm{N}^{-}{ }^{n} \mathrm{Bu}, 2$-hydroxypyridine, toluene, 66%; (e) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N-Boc-Ala, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$; (f) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) N -Boc- S -Bn-Cys, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 61 \%$; (g) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), cis-1,4-dibromobutene, 24%; (h) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), trans-1,4-dibromobutene, 22%.

In addition to the above-described inhibitors, modeling studies also suggested bicyclic piperidine macrocycles as potential inhibitors so as to benefit from specific interactions with individual amino acid residues in the P_{3} pocket, such as Gly11 and Thr232 (see Discussion). We synthesized 2,3-disubstituted and 3,4-disubstituted piperidine dithia macrocycles 52, 54, 63, and 69 ,respectively, in diastereomerically pure form (Schemes 5 and 6).

The synthesis of these bicyclic macrocycles presented significant challenges. Modeling studies suggested the need for a $(2 R, 3 R)$ absolute configuration for the piperidine moiety as in 54. Our synthetic route allowed us to prepare both diastereomeric final products with either $(2 S, 3 S)$ or $(2 R, 3 R)$ configuration as in 52 and 54, respectively. Results later showed that unexpectedly the ($2 S, 3 S$)-diastereomer $\mathbf{5 2}$ had higher activity compared with 54 (see Discussion).

Racemic N-Boc-3-methoxy piperidine 43 was treated with sec-BuLi in the presence of tetramethylethylenediamine (TMEDA) to generate the corresponding α-lithiated heterocycle ${ }^{33}$ (Scheme 5). Quenching with CO_{2} and workup led to the α, β unsaturated acid 44 in excellent yield. Esterification to the trimethylsilylethyl ester $\mathbf{4 5}$ and treatment with benzyl mercaptan in methanolic sodium methoxide ${ }^{34,35}$ gave a 78% yield of a $1: 1$ mixture of diastereomeric N-Boc-3-S-benzyl pipecolic acid esters 46. Cleavage of the Boc group allowed the separation of the racemic cis and trans isomers. The cis isomer of 47 was transformed again to the N-Boc ester 48, and the (trimethylsilyl)ethyl (TMSE) ester was cleaved leading to free acid 49. Peptide coupling with the amine derived from $\mathbf{2 1}$ gave amides $\mathbf{5 0}$ as a 1:1 inseparable mixture of diastereomers. Treatment with Na /

Scheme $\mathbf{5}^{a}$

${ }^{a}$ Reagents and conditions: (a) (i) TMEDA, sec-BuLi, THF, (ii) CO_{2}, $\mathrm{HCl}, 80 \%$; (b) TMSEOH, DEAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, 72 \%$; (c) BnSH, NaOMe, $\mathrm{MeOH}, 78 \%$; (d) TFA, DCM, 75%; (e) (Boc$)_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}, 90 \%$; (f) TBAF, THF, quant; (g) 21, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 62 \%$; (h) (i) $\mathrm{Na}-$ NH_{3} (liq), (ii) trans-dibromobutene, 54%; (i) TFA/DCM, quant.
NH_{3} (liquid) generated the corresponding sodium thiolates, which upon alkylation with trans-1,4-dibromobutene gave the desired bicyclic dithia macrocycles $\mathbf{5 1}$ and $\mathbf{5 3}$ in 54% yield after separation by column chromatography. Cleavage of the N-Boc group gave the corresponding piperidine dithia macrocycles 52 and $\mathbf{5 4}$, respectively. The stereochemical identity of $\mathbf{5 2}$ was deduced from the X-ray structure of a cocrystal complex with BACE (see below). While the ($2 R, 3 R$)-isomer 54 showed only weak inhibitory activity against BACE (45% inhibition at 10 $\mu \mathrm{M}$), the ($2 S, 3 S$)-isomer 52 showed an IC_{50} of 190 nM , which was in contradiction to the modeling study (see Discussion).

The isomeric ($3 R, 4 S$)-bicyclic piperidine dithia macrocycle corresponding to $\mathbf{6 3}$ (and its $3 S, 4 R$-diastereomer 69) were synthesized starting with N -Boc-4-ketopiperidine 55 (Scheme 6). Treatment with lithium diisopropylamide (LDA) and trapping the enolate with Comins's reagent ${ }^{36,37}$ gave the enol triflate 56, which was transformed to the corresponding methyl ester 57 using a Pd-catalyzed carbonylation reaction. ${ }^{38}$ Conjugate addition of benzyl mercaptan in methanolic sodium methoxide gave a racemic mixture of cis-3-benzylthioethers 58. Treatment of the mixture with pig liver esterase in phosphate buffer (pH 7.2) afforded the ester 59 and acid $\mathbf{6 0}$ in quantitative yield. The identity of the ester $\mathbf{5 9}$ was ascertained from a single-crystal X-ray structure. ${ }^{32}$ Coupling of the amine derived from 21 with $\mathbf{6 0}$ afforded the $(3 R, 4 S)$-piperidine linear peptide $\mathbf{6 1}$ in 68% yield. Reductive cleavage of the benzyl groups and bis-alkylation with trans-1,4-dibromobutene gave the intended macrocycle 62 in 39% isolated yield. Cleavage of the N-Boc group gave the corresponding piperidine dithia macrocycle 63 in quantitative yield. A similar protocol was followed for the synthesis of the diastereoisomeric ($3 S, 4 R$)-piperidine dithia macrocycles $\mathbf{6 8}$ and

Scheme 6^{a}

${ }^{a}$ Reagents and conditions: (a) (i) LDA, THF, (ii) Comins's reagent, THF, 81%; (b) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CO}, \mathrm{DMF}, \mathrm{MeOH}, 77 \%$; (c) BnSH , $\mathrm{NaOMe}, \mathrm{MeOH}, 89 \%$; (d) PLE, buffer, pH 7.2, 49\%; (e) 21, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 68 \%$; (f) (i) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), (ii) trans-dibromobutene, 39%; (g) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant; (h) (i) LiOH , THF, $\mathrm{H}_{2} \mathrm{O}$, (ii) TMSEOH, EDCI, DMAP, 74% for two steps; (i) $\mathrm{BnSH}, \mathrm{NaOMe}, \mathrm{MeOH}, 82 \%$; (j) (i) TBAF, (ii) 21, PyBOP, DIEA, $\mathrm{CH} 2 \mathrm{Cl}_{2}, 68 \%$; (k) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), then trans-1,4-dibromobutene, 48%.

69 starting from 64, which was prepared from 3-keto-4carbomethoxy N-benzylpiperidine. ${ }^{39,40}$ In this case, it was more practical to separate the diastereomeric macrocycles 61 and 67, rather than to use enantiopure 59.

Our modeling studies also suggested that the carba/thia analogues $\mathbf{8 2}$ and $\mathbf{8 4}$ of the two 2,3-disubstituted piperidine bicyclic macrocycles would be potential inhibitors of the enzyme (Scheme 7). We therefore in parallel also developed methods for the stereocontrolled synthesis of macrocycles in this new series. For practical reasons, we utilized sequences that would give both diastereomers to maximize information with regard to stereochemical differences.

The commercially available 2,3-pyridinedicarboxylic anhydride was subjected to methanolysis, and the resulting acid 70 was converted through well-precedented steps to the extended α, β-unsaturated ester 72, then aldehyde $\mathbf{7 4}$, which was extended to the allylic alcohol 77 (Scheme 7). Coupling of the corresponding carboxylic acid 78 with the amine derived from 21 afforded a separable mixture of dipeptides 79 and $\mathbf{8 0}$. Cleavage of the S-benzyl group, followed by intramolecular Mitsunobu

Scheme 7^{a}

${ }^{a}$ Reagents and conditions: (a) MeOH , reflux, 50%; (b) (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, HOAc , (ii) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{NaHCO}_{3} 76 \%$; (c) (i) $(\mathrm{COCl})_{2}$, toluene, (ii) NaBH_{4}, THF, 78%; (d) Dess-Martin periodinane, 90%; (e) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}-$ TMSE, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; (f) Pd/C, H_{2}, AcOEt, 98%; (g) TBAF, THF, 93%; (h) $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, quant; (i) 21, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 64 \%$; (j) (i) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), (ii) ADDP, $\mathrm{PMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 42 \%$ for two steps; (k) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.
thioetherification, gave the bicyclic piperidine carba/thia macrocycles 81 and 83 , respectively. Cleavage of the N-Boc group by acidic treatment gave the free piperidine bicyclic macrocycles 82 and 84 , respectively.

An enantio-enriched version was also achieved to assign absolute stereochemistry to the separated diastereomers $\mathbf{8 2}$ and 84 and to eventually secure their synthesis as pure diastereomers. Thus, S-1-phenylethylamine was transformed to the bis-alkylated enantiopure glycine ester $\mathbf{8 5}$ following Normant's procedure ${ }^{41,42}$ (Scheme 8). Base-catalyzed cyclization in the presence of CuCN and allyl bromide gave the chain-extended piperidine $\mathbf{8 6}$ in 65% yield. Oxidative cleavage of the terminal olefin with OsO_{4} in the presence of NaIO_{4} afforded the aldehyde 87. Reductive cleavage of the α-methylbenzyl group and further protection as N-Boc derivative afforded $\mathbf{8 8}$, which corresponds to the enantiopure form of $\mathbf{7 4}$. Thus, access to enantiopure $\mathbf{8 2}$ could be achieved via an asymmetric synthesis.
Finally, the diastereomeric 3,4-disubstituted piperidine carba/ thia variants $\mathbf{9 9}$ and $\mathbf{1 0 1}$ were synthesized from the previously

Scheme 8^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{DCM}, 4 \AA \mathrm{MS}$, rt, (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, (iii) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO, 80% for three steps; (b) (i) $\mathrm{LDA}, \mathrm{ZnBr}_{2}$, $\mathrm{Et}_{2} \mathrm{O}$, (ii) $\mathrm{CuCN}, \mathrm{AllylBr}, \mathrm{THF}, 65 \%$; (c) OsO_{4}, dioxane $-\mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, 61 \%$; (d) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2},(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{MeOH}, 54 \%$.

Scheme 9^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{Mg}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$, THF, then CuI, (ii) 64, TMSCl, HMPA, 68\%; (b) TBAF, THF, 90\%; (c) Dess-Martin periodinane, 80%; (d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{TMSE}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; (e) TBAF, THF, 63%; (f) (i) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 60 \%$; (g) LiOH , THF- $\mathrm{H}_{2} \mathrm{O}, 96 \%$; (h) 21, PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$; (i) (i) $\mathrm{Na}-\mathrm{NH}_{3}$ (liq), (ii) ADDP, PMe_{3}, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \%$; (j) TFA, DCM, quant.
described ester 64 (Scheme 9). A mixed cuprate reagent prepared from 3-tert-butyldimethylsilyloxy propyl bromide ${ }^{43}$ was added to $\mathbf{6 4}$ to give an 8:1 cis/trans mixture of adducts $\mathbf{8 9}$. Cleavage of the TBS group led to the corresponding alcohols, which were separable by flash column chromatography. Oxidation of the racemic cis isomer 90 with the Dess-Martin periodinane reagent, ${ }^{44,45}$ followed by Wittig homologation, gave α, β unsaturated ester 92, which was selectively transformed to the
corresponding allylic alcohol 94. Hydrolysis of the ethyl ester and coupling of the resulting acid 95 with the amine derived from 21 gave a 1:1 mixture of the dipeptides 96 and 97 , which were easily separated by flash column chromatography. Cleavage of the benzylthioether and intramolecular Mitsunobu thioetherification, as previously described in Scheme 6, gave the isomeric macrocycles 98 and 100 , which were individually converted to the bicyclic piperidine carbathio macrocycles 99 and 101, respectively (relative cis stereochemistry).

Biological Data and Structure-Activity Relationships. SAR of Dithia Macrocycles. Statin-derived bis-thioether macrocycles have been shown to have similar activity on pepsin compared with their open chain analogues. ${ }^{7}$ Hydroxyethylenetype open-chain inhibitors 103 and $\mathbf{1 0 4}$, spanning P_{3} to $P_{2}{ }^{\prime}$, were available from previous unpublished studies in our laboratory. These showed submicromolar activity on BACE and nanomolar activity on pepsin (Table 1). We prepared a number of closely related N-Ac dithia macrocycles linking P_{1} and P_{3} side chains (Table 1, 29-31). A dramatic loss of activity was found $\left(\mathrm{IC}_{50}\right.$ $>10 \mu \mathrm{M})$ against BACE, while a less pronounced loss in activity was observed for pepsin and cathepsin D (Table 1). These two enzymes were chosen for comparison because they are the most similar structurally known aspartic proteases (except for the almost identical BACE2).

The 15- and 16-membered N-Boc saturated macrocycles were found to have about equal potency for BACE, while the 17membered ring had clearly lower activity (Table 1, 23 and 24 compared with 25). For pepsin, the ring size does not seem to affect the activity, while for cathepsin D , the larger rings are preferred over the smaller 15 -membered ring.

Compared with the saturated inhibitor 23, the conformationally restricted trans-olefin $\mathbf{2 8}$ in the 15 -membered series showed increased activity on BACE, while the corresponding cis-olefin 27 was only slightly weaker. Molecular modeling could not reveal any clear differences between the saturated linker and the two olefinic counterparts. The data suggests that in the transolefin, the flexibility of the chain is restricted in a favorable conformation, leading to better binding and increased activity compared with the saturated analogue. As predicted in the model, the aromatic linker in compounds $\mathbf{2 6}$ and $\mathbf{3 2}$ is too bulky to fit in the pocket, and the activity is therefore lost.

The replacement of the Boc group by an acetyl consistently results in lower activity against BACE, as well as cathepsin D and pepsin (Table 1, 23-26 compared with 29-32) as reported by other groups. ${ }^{46}$ The S_{4} pocket is substantially more hydrophobic in cathepsin D (e.g., Leu236, Leu 292, Leu303, and Met307 in cathepsin D correspond to Asn233, Arg307, Lys321, and Ser325 in BACE, respectively), which may explain the larger contribution of the Boc group to binding potency. The small beneficial effect observed with BACE compared with cathepsin D suggests that in this case, the tert-butyl moiety of the Boc group cannot make good hydrophobic contacts due to the more hydrophilic nature of the S_{4} pocket. This inference is supported by the X-ray analysis of the BACE complex with 42 (see below).

While both N-Boc and N-acetyl groups allow for the positive interaction of the NH with Thr232, the loss of this interaction results in considerably lower activity as seen in the corresponding amino analogues compounds 34 and 35 (compared with 27 and 28).

SAR of Oxygen-Linked Macrocycles. In a limited program, we also explored the dioxa and mixed oxa/thia analogues of the dithia macrocycles (Table 2). For the interpretation of the results, it has to be considered that these compounds were

Table 1. SAR of Dithia Macrocycles and Open-Chain References

Compound no.	$\mathrm{R}=$	Linker	IC_{50} BACE ($\mu \mathrm{M}$)		IC_{50} Pepsin ($\mu \mathrm{M}$)
23	BocNH	$\left(\mathrm{CH}_{2}\right)_{4}$	20.0	0.18	0.025
24	BocNH	$\left(\mathrm{CH}_{2}\right)_{5}$	16.9	0.020	0.030
25	BocNH	$\left(\mathrm{CH}_{2}\right)_{6}$	>10	0.025	0.060
26	BocNH		>10	0.195	0.385
27	BocNH	$\begin{gathered} \text { cis }-\mathrm{CH}_{2-}^{-} \\ \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \end{gathered}$	9.0	0.46	<0.01
28	BocNH	$\begin{aligned} & \text { trans }-\mathrm{CH}_{2}- \\ & \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \end{aligned}$	1.3	0.19	<0.01
29	AcNH	$\left(\mathrm{CH}_{2}\right)_{4}$	>10	9.7	0.74
30	AcNH	$\left(\mathrm{CH}_{2}\right)_{5}$	>10	1.7	0.29
31	AcNH	$\left(\mathrm{CH}_{2}\right)_{6}$	>10	1.25	0.27
32	AcNH		>10	3.6	1.7
34	H	$\begin{gathered} \text { cis }-\mathrm{CH}_{2-} \\ \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \end{gathered}$	>10	>10	$\begin{aligned} & 79 \% @ \\ & 10 \mu \mathrm{M}^{\mathrm{a}} \end{aligned}$
35	H	$\begin{aligned} & \text { trans }-\mathrm{CH}_{2-} \\ & \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \end{aligned}$	>10	3.9	0.8
102	$\mathrm{H}_{2} \mathrm{~N}$	$\begin{aligned} & \text { trans }-\mathrm{CH}_{2-} \\ & \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \end{aligned}$	>10	0.15	<0.01
103	H		0.12	0.26	0.015
104	Me		0.10	0.19	0.046

${ }^{a} \mathrm{IC}_{50}$ not determined.
obtained as undefined mixtures of cis- and trans-olefins. Nevertheless, we can conclude that the dioxa analogues are weaker on all three enzymes compared with the dithia macrocycle (Table 2, $\mathbf{1 5}$ and $\mathbf{1 6}$ compared with 23, 27, and 28). In the case of BACE, this seems to be due to unfavorable interactions of the oxygen in this specific position in P_{3}. The properties of this position are determined by the closely located lipophilic Ile110 and the proximity of the carbonyl oxygen of Gly11. The detrimental effect of an oxygen atom at this particular position was also observed in other peptidomimetic macrocyclic series (unpublished results). The mixed analogue 17 showed improved activity on BACE compared with the dithia analogues 27 and $\mathbf{2 8}$, indicating a slightly positive effect of the replacement of sulfur by an oxygen in the P_{1} linker. The effect

Table 2. SAR of Oxygen-Linked Macrocycles

$\begin{gathered} \text { compd } \\ \text { no. } \end{gathered}$	R, X, Y	linker	IC_{50} BACE ($\mu \mathrm{M}$)	IC_{50} CathD ($\mu \mathrm{M}$)	IC_{50} pepsin ($\mu \mathrm{M})$
16	Boc, O, O	$\left(\mathrm{CH}_{2}\right)_{4}$	> 10	1.11	0.325
15	Boc, O, O	$\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}{ }^{\text {a }}$	20.3	0.91	0.060
17	Boc, S, O	$\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}{ }^{\text {a }}$	0.51	0.11	<0.01
18	Ac, S, O	$\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}{ }^{\text {a }}$	1.12	6.0	0.17

${ }^{a}$ Olefins were mixtures of cis and trans isomers.
Table 3. Elongation in P^{\prime}
compd
no.
on inhibition of cathepsin D and pepsin was marginal. The replacement of the N-Boc group by N-acetyl resulted in the same small effect as seen before (Table 2, 17 compared with 18). Due to the difficulty to control the geometry of the olefins, further studies were continued only in the dithia series (despite the tendency for higher potency of the mixed analogues).

Effect of Elongation in \mathbf{P}^{\prime}. The compounds described so far do not contain an amino acid residue in $\mathrm{P}_{2}{ }^{\prime}$ but rather a butylamide capping group filling the respective pocket. As already demonstrated in other series, ${ }^{27}$ the elongation of the P^{\prime} side by a capped $\mathrm{P}_{2}{ }^{\prime}$ amino acid increases the activity. In the present case, the introduction of an additional valine in $\mathrm{P}_{2}{ }^{\prime}$ resulted in an increase of activity by about one order of magnitude (Table 3). This is true for BACE as well as cathepsin D and comparable to the effect found in previous series. ${ }^{27}$ The effect on pepsin could not be quantified by our assay system, but the high activity $(<10 \mathrm{nM})$ is well in line with the activity reported by Szewczuk et al. ${ }^{7}$ for an analogous statin-derived trans-butene-linked 15-membered dithia macrocycle ($<1 \mathrm{nM}$). Against BACE, the trans-dithia macrocycle 42 exhibited an IC_{50} of 156 nM and was submitted for cocrystallization. The structure of the complex was solved to a resolution of $2.10 \AA$ (Figure 3) and supported our original hypothesis, showing a very good match of the experimental structure to the one predicted by the model.

In particular, a structural overlay of the $\mathbf{1}$ (OM00-3) complex (Figure 3) with the macrocyclic compound $\mathbf{4 2}$ demonstrated that the peptide backbones of both compounds superimpose remarkably well. All important binding interactions originally observed in the complex with the linear peptidomimetic inhibitor were in fact nicely mimicked by the macrocyclic inhibitor. Critical hydrogen-bonded interactions to the BACE active site, including those to Gly34, Pro70, Thr72, Gln73, Gly230, and Thr232, are also observed with $\mathbf{4 2}$, further confirming that the binding of the hydroxyethylene transition state isostere is not altered as a consequence of the incorporation of the macrocyclic motif $\mathbf{4 2}$. Furthermore, and in comparison to the $\mathbf{1}$ complex, only a few structural changes affecting the enzyme active site are observed,

Figure 3. X-ray structure of $\mathbf{4 2}$ (dark green)-BACE complex (top) and overlay of the X-ray structures of BACE complexes with 42 (this work, dark green) and $\mathbf{1}$ (PDB 1 M 4 H , orange) (bottom).
the main difference between the two complexes being a small induced fit of the enzyme flap, which can be rationalized by the presence of smaller substituents at P_{2} and the leaner substituent at P_{1} in 42. The butylamide cap binds to the $S_{3}{ }^{\prime}$ subsite and appears to be a good replacement for the $\mathrm{P}_{3}{ }^{\prime}$ glutamic acid of $\mathbf{1}$, contributing similar hydrophobic contacts to the enzyme flap as well as to the H -bonded interaction to the Pro70 oxygen. Surprisingly, the N-terminal Boc protecting group was not visible in the electron density maps, suggesting that this part of the molecule remains mobile in the complex or adopts several binding modes. This observation is consistent with the fact that the S_{4} pocket of BACE is large, very hydrophilic, and highly exposed to solvent. Also, our in vitro inhibition data show that an N-terminal Boc group is only marginally better than the corresponding N-acetyl derivative against BACE but clearly more active than the free amine $\mathbf{1 0 2}$ as reported for other cases. ${ }^{6}$ The electron density for the trans-butene linker in the macrocycle was weak, leaving the position of the double bond undefined, indicating that conformational disorder is also affecting this region of the molecule, although to a lesser extent. This observation suggests that the trans-dithia bridge could be present in more than one tight fitting conformation in the S_{1} and S_{3} subpockets, which are both large enough to accommodate a branched alkyl side chain such as leucine, as in OM00-3 for instance. Indeed, flexible docking calculations indicate that several conformations in the area of the double bond are possible without affecting the overall position of the ligand.

Bicyclic Scaffolds. In addition to the above-described macrocycles, we also explored two bicyclic piperidine scaffolds with a positively charged nitrogen represented by 2,3- and 3,4disubstituted 54 and $\mathbf{6 9}$, respectively. They were designed in the model to each pick up one of two possible interactions, either with the Thr232 OH (as in $\mathbf{1}$ and other peptidomimetic inhibitors) or with the Gly11 CO (Figure 4). These interactions were intended to replace and compensate for the interactions of the $P_{3}-P_{4}$ amide or carbamate group in the former structures.

To our disappointment, the designed compound 69 was found to be inactive against BACE, while compound 54 showed weak activity (Table 4). In comparison with compound 35 (lacking the piperidine ring), there was no gain in activity for 69 but a

Figure 4. Overlay of OM00-3 (orange) with models of bicyclic inhibitors (54, top, and 69, bottom) showing the intended interactions and expected conformation.

Table 4. SAR of Bicyclic Macrocycles

compd comp no.	stereoisomer	X	V	W	IC_{50} BACE $(\mu \mathrm{M})$	IC_{50} CathD $(\mu \mathrm{M})$	IC_{50} pepsin $(\mu \mathrm{M})$
$\mathbf{6 9}$	A	S	NH	CH_{2}	>10	>10	~ 2
$\mathbf{6 3}$	B	S	NH	CH_{2}	>10	~ 9	~ 10
$\mathbf{5 4}$	A	S	CH_{2}	NH	~ 12	~ 0.2	~ 0.01
$\mathbf{5 2}$	B	S	CH_{2}	NH	0.19	0.01	<0.01
$\mathbf{9 9}$	A	CH_{2}	NH	CH_{2}	>10	>10	>10
$\mathbf{1 0 1}$	B	CH_{2}	NH	CH_{2}	>10	>10	>10
$\mathbf{8 2}$	A	CH_{2}	CH_{2}	NH	>10	>10	0.092
$\mathbf{8 4}$	B	CH_{2}	CH_{2}	NH	>10	6.9	0.51

slight gain for $\mathbf{5 4}$, indicating that the interaction with Thr232 is more feasible than the interaction with Gly11. The observed parallel gain in activity for $\mathbf{5 4}$ compared with $\mathbf{3 5}$ in cathepsin D and pepsin can be attributed to a similar positive interaction of the piperidine nitrogen with the Ser235 residue in the position corresponding to Thr232 in BACE. Since the syntheses for both bicyclic scaffolds started from racemic materials and involved a separation of isomers in a later step, we also had access to diastereomers 52 and 63. As for 69, the diastereomeric compound 63 was inactive against BACE and compared with 35, which does not have a piperidine ring, did not show improvement for cathepsin D and pepsin either. However, compound 52 (the diastereomer of the weak inhibitor 54) showed surprisingly good activity (Table 4). Compared with the elongated macrocycle 42, 52 lacks the P_{4} and $\mathrm{P}_{3}{ }^{\prime}$ moieties. Nevertheless, the two compounds are equipotent against all enzymes. This was difficult to understand on the basis of the model, and the compound was therefore submitted for cocrys-

Figure 5. Overlay of the X-ray conformations of the BACE complexes with 42 (dark green) and 52 (cyan).

Figure 6. X-ray crystal structure of $\mathbf{5 2}$ (cyan)-BACE complex (top) and overlay of crystal structures of $\mathbf{5 2}$ (cyan) and $\mathbf{1}$ (orange) (partial surface to show S_{3} pocket) (bottom).
tallization. The structure could be solved to a resolution of 2.3 \AA, and in contrast to the crystal structure of $\mathbf{4 2}$ with the enzyme, it revealed some unexpected surprises.

A comparison of the BACE complexes with $\mathbf{4 2}$ and $\mathbf{5 2}$ is presented in Figure 5. The structure of the active site and the conformation of the enzyme flap are similar in the two complexes. However, the binding modes of these two transdithia macrocyclic compounds differ substantially in several respects. As expected, the butylamine group of $\mathbf{5 2}$ binds in $\mathrm{S}_{2}{ }^{\prime}$ and acts as a replacement of the valine side chain of $\mathbf{4 2}$, while maintaining the key H -bonded interaction to Gly34. Modeling of the originally suggested $(2 R, 3 R)$ isomer 54 predicted an interaction of the piperidine nitrogen with Thr232. The active diastereomer 52 indeed forms such a hydrogen bond of $2.9 \AA$ length. However, the position of the nitrogen is not as seen in most cocrystal structures (e.g., $\mathbf{1}$) but instead is shifted by 1.5-2 \AA toward the S_{3} pocket (Figure 6). Because of this shift, the piperidine carbon chain fills nicely the hydrophobic S_{3} pocket. As an additional striking difference, the trans-dithia bridge of 52 follows a completely different path in comparison to that observed in the complex with 42. It seems surprising that such good activity is exhibited by a compound with such an unusual conformation of the macrocyclic chain, in particular because the space usually occupied by P_{1} and P_{3}, as seen in $\mathbf{1}$, is not filled (see Figure 6). We speculate that this is due to the positive interaction of the piperidine moiety in the S_{3} pocket as described above. Interestingly, although the electron density was well
defined for most inhibitor atoms, it was again weaker for the trans-butene linker, with an undefined position of the double bond. This observation suggests that the conformational flexibility already observed for the trans-dithia linker of compound 42 is also exhibited by the bicyclic piperidine macrocyclic compound 52.

In an attempt to better understand the discrepancy between the model and the results for the bicyclic compounds we tried a functional modification in the macrocycle by replacing one sulfur atom by carbon. Unexpectedly, all the diastereomeric carbathia bicyclic macrocycles (82, 84, 99, and 101), were inactive against BACE, including the carbon analogue 84 of the active inhibitor 52. The activities were found to be lower than the respective dithia analogues for cathepsin D (Table 4). Curiously, only the two carbathia analogues $\mathbf{8 2}$ and $\mathbf{8 4}$ showed inhibition against pepsin (Table 4).

Conclusion

The primary objective of this study was to demonstrate the feasibility of linking P_{1} and P_{3} residues in acyclic BACE inhibitors, which would result in macrocyclic structures. Beside other advantages, these compounds were expected to show improved activity through pre-organization of the bioactive conformation. However, our expectations for activity on BACE were not fulfilled, especially in comparison with the high activity on pepsin. A cocrystal structure of one of the inhibitors in BACE showed that despite the macrocyclization, the molecule still seems to be relatively flexible, as could be concluded, for example, from the weak electron density for the chain positioned in the $S_{1}-S_{3}$ pockets. To improve interactions through additional hydrogen bonds and to introduce further rigidity, novel bicyclic macrocycles incorporating a piperidine moiety were designed. Synthetic approaches for all possible diastereoisomers of the piperidine moiety were developed. Surprisingly, the biological results did not match the predictions from the model with respect to the preferred stereochemistry. A cocrystal structure of the most active inhibitor revealed a shift of the molecule that unexpectedly placed the piperidine ring in the S_{3} pocket, while forcing the $\mathrm{P}_{1}-\mathrm{P}_{3}$ chain into an unusual conformation and orientation.

Experimental Section

Solvents were distilled under positive pressure of dry argon before use and dried by standard methods: THF and ether from Na /benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene from CaH_{2}. All commercially available reagents were used without further purification. All reactions were performed under argon atmosphere. NMR (${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$) spectra were recorded on Bruker AMX-300 and ARX-400 spectrometers in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, or $\mathrm{D}_{2} \mathrm{O}$ with solvent resonance as the internal standard. Low- and high-resolution mass spectra were recorded on VG Micromass, AEIMS 902, or Kratos MS-50 spectrometers using fast atom bombardment (FAB). The purity of the macrocyclic target compounds was determined to be $>95 \%$ by LC/MS obtained on a Finnigan Surveyor MSQ spectrometer. Purity of the compounds was determined by method A, Alltech Prevail C18 column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) at $0.5 \mathrm{~mL} / \mathrm{min}$ flow rate using a gradient of $20-90 \%$ acetonitrile -water (0.1% trifluoroacetic acid), and method B, Alltech Prevail C18 column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) at $0.5 \mathrm{~mL} / \mathrm{min}$ flow rate using 65% methanol-water (0.1% trifluoroacetic acid). Optical rotations were recorded on a PerkinElmer 241 polarimeter in a 1 dm cell at ambient temperature. Analytical thin-layer chromatography was performed on Merck 60F 254 precoated silica gel plates. Flash column chromatography was performed using 40-60 micron silica gel at increased pressure. All melting points are uncorrected.
(4S,1'S)-4-(1-Hydroxy-3-methoxycarbonyl-prop-2-ynyl)-2,2-dimethyl-oxazolidine-3-carboxylic Acid tert-Butyl Ester (2) and
(4S,1'R)-4-(1-Hydroxy-3-methoxycarbonyl-prop-2-ynyl)-2,2-di-methyl-oxazolidine-3-carboxylic Acid tert-Butyl Ester (3). Butyl lithium (1.6 M in hexane, $28 \mathrm{~mL}, 44.8 \mathrm{mmol}$) was added dropwise into a solution of methyl propiolate ($4.1 \mathrm{~mL}, 49.1 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, the solution was stirred at the same temperature for 1 h , and then a pre-prepared and pre-cooled solution of zinc bromide $(12.4 \mathrm{~g}, 55 \mathrm{mmol})$ in diethyl ether $(100 \mathrm{~mL})$ was added through a cannula. The mixture was stirred at $-78^{\circ} \mathrm{C}$ to room temperature for 2 h , then cooled to $-20^{\circ} \mathrm{C}$, and a pre-cooled solution of Garner's aldehyde ${ }^{9}(4.1 \mathrm{~g}, 17.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added by a cannula. The mixture was stirred at $-20^{\circ} \mathrm{C}$ to room temperature for 6 h , then cooled to $-20^{\circ} \mathrm{C}$, and saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added to quench the reaction. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography (hexane/AcOEt 3/1) of the residue gave $2(3.2 \mathrm{~g}, 57 \%)$ and $\mathbf{3}(0.27 \mathrm{~g}, 5 \%)$. For 2: $[\alpha]_{\mathrm{D}}$ $-79.3\left(c 0.85, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 4.69$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.4,6.0 \mathrm{~Hz}), 4.32(\mathrm{~b}, 1 \mathrm{H}), 4.15(\mathrm{~b}, 1 \mathrm{H}), 4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}$, $100 \mathrm{MHz}) \delta 155.3,154.0,95.2,86.4,82.4,77.2,71.4,65.6,61.9$, 53.2, 28.7, 26.7, 24.5; MS (FAB) m/z $314\left(\mathrm{M}+\mathrm{H}^{+}\right), 258,240$, 214, 200; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 314.1617$, found 314.1613. For 3: $[\alpha]_{\mathrm{D}}-68.8$ (c 1.29, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.400 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 5.44(\mathrm{~b}, 1 \mathrm{H}), 4.57(\mathrm{~b}, 1 \mathrm{H}), 4.08(\mathrm{~b}, 1 \mathrm{H}), 4.07-$ $3.82(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.8,153.9,95.6,85.8,82.3,77.7,65.3$, 64.8, 62.6, 53.1, 28.6, 26.1, 25.5; MS (FAB) $m / z 314\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 258, 240, 214, 200; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 314.1617, found 314.1613.
(4S,1'S)-4-(1-Hydroxy-3-methoxycarbonyl-propyl)-2,2-dimethyl-oxazolidine-3-carboxylic Acid tert-Butyl Ester (4). In procedure 1, a mixture of $2(0.82 \mathrm{~g}, 2.6 \mathrm{mmol})$ and palladium (5% on barium sulfate, 0.25 g$)$ in $\operatorname{AcOEt}(10 \mathrm{~mL})$ was charged with H_{2} to 50 psi and stirred for 3 h , then filtered through a pad of Celite and washed with AcOEt. The combined filtrate was concentrated to give product $4(0.78 \mathrm{~g}, 95 \%)$. In procedure 2 , into a solution of $5(0.71 \mathrm{~g}, 2.3$ $\mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.18 \mathrm{~g}, 4.6 \mathrm{mmol})$ portionwise at $-15^{\circ} \mathrm{C}$. The mixture was stirred at -15 to $0^{\circ} \mathrm{C}$ for 5 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added, MeOH was removed, the aqueous solution was extracted with AcOEt, and the organic layer was dried and concentrated. Flash chromatography (hexane/AcOEt $2 / 1)$ of the residue gave $4(0.6 \mathrm{~g}, 85 \%)$: $[\alpha]_{\mathrm{D}}-50.3\left(c 0.64, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.98$ $(\mathrm{m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.42(\mathrm{~m}$, $2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.5,154.6,94.8,82.2,77.6,72.3$, 65.1, 62.1, 51.9, 30.9, 28.7, 26.8, 24.5; MS (FAB) m/z 318 (M + H^{+}).
(4S)-4-(3-Methoxycarbonyl-propionyl)-2,2-dimethyl-oxazoli-dine-3-carboxylic Acid tert-Butyl Ester (5). Into a solution of Dess-Martin periodinane reagent ($5 \mathrm{~g}, 12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\mathrm{mL}), 3(2.7 \mathrm{~g}, 8.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 3 h , saturated NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ were added, and then 1 N NaOH was added to get a clear solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 50 mL); the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (hexane/AcOEt 5/1) of the residue gave the ketone ($2.0 \mathrm{~g}, 75 \%$). A mixture of the ketone (0.41 $\mathrm{g}, 1.3 \mathrm{mmol}$) and palladium (5% on barium sulfate, 0.1 g) in AcOEt $(6 \mathrm{~mL})$ was charged with H_{2} to 50 psi and stirred for 3 h , then filtered through a pad of Celite and washed with AcOEt. The combined filtrate was concentrated to give 5 ($0.4 \mathrm{~g}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.31(\mathrm{~b}, 1 \mathrm{H}), 4.13-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.38$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 206.4,172.7,152.3,94.4$, 80.6, 76.9, 65.1, 51.7, 33.7, 33.3, 28.1, 25.3, 24.6; MS (FAB) m/z. $316\left(\mathrm{M}+\mathrm{H}^{+}\right), 260,216,202$.
(4S,2'S)-2,2-Dimethyl-4-(5-oxo-tetrahydro-furan-2-yl)-oxazol-idine-3-carboxylic Acid tert-Butyl Ester (6). Compound 4 (0.32 $\mathrm{g}, 1 \mathrm{mmol})$ was dissolved in toluene $(5 \mathrm{~mL})$, acetic acid $(18 \mu \mathrm{~L})$
was added, the mixture was heated to reflux for 5 h and then cooled to room temperature, and the solvent was removed under reduced pressure. Flash chromatography of the residue gave the product 6 $(0.27 \mathrm{~g}, 95 \%):[\alpha]_{\mathrm{D}}-21.7\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\left.\mathrm{MHz}, 50^{\circ} \mathrm{C}\right) \delta 4.82(\mathrm{~b}, 1 \mathrm{H}), 4.25(\mathrm{~b}, 1 \mathrm{H}), 4.0(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $6.3 \mathrm{~Hz}), 3.87(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 177.1,153.6,95.1,81.2,80.3,79.2,65.2,59.5,28.7,26.8$, 25.5, 23.6; MS (FAB) $m / z 286\left(\mathrm{M}+\mathrm{H}^{+}\right), 230,186,172,154$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$286.1654, found 286.1649 .
(4S,2'S,4'R)-2,2-Dimethyl-4-(4-methyl-5-oxo-tetrahydro-furan-2-yl)-oxazolidine-3-carboxylic Acid tert-Butyl Ester (7). To a stirred solution of $6(0.8 \mathrm{~g}, 3.16 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added LiHMDS (1 M in THF, 4.7 mL) dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then methyl iodide ($0.39 \mathrm{~mL}, 6.4 \mathrm{mmol}$) was added dropwise, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{AcOEt}(3 \times 100 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography to give 7 as an amorphous solid $(0.5 \mathrm{~g}, 70 \%):[\alpha]_{\mathrm{D}}$ $-1.6\left(c 0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.75(\mathrm{~b}, 1 \mathrm{H})$, $4.21(\mathrm{~b}, 1 \mathrm{H}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=9.6,6.2 \mathrm{~Hz}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~b}$, $1 \mathrm{H}), 2.45(\mathrm{~b}, 1 \mathrm{H}), 2.33(\mathrm{~b}, 1 \mathrm{H}), 1.93(\mathrm{~b}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}$, $3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 180.2,179.8,153.5,152.3,95.2,94.8,81.4,81.1,77.2$, 64.4, 58.5, 34.6, 34.4, 31.9, 28.7, 27.4, 27.1, 24.5, 23.2, 16.6, 16.4; MS (FAB) m/z $300\left(\mathrm{M}+\mathrm{H}^{+}\right), 244,200,186,154$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 300.1810$, found 300.1806.
(1S,2'S,4'R)-[2-Hydroxy-1-(4-methyl-5-oxo-tetrahydro-furan-2-yl)-ethyl]-carbamic Acid tert-Butyl Ester (8). To a stirred solution of $7(0.67 \mathrm{~g}, 2.2 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1 / 1,26 \mathrm{~mL})$ was added p-toluenesulfonic acid $(0.85 \mathrm{~g}, 4.4 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 days, saturated NaHCO_{3} solution was added to pH 8 , the mixture was extracted with AcOEt $(3 \times 60$ mL), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography (hexane/AcOEt 1/2) to give 8 (0.43 g , $75 \%):[\alpha]_{\mathrm{D}}+4.6\left(c 0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $4.92(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.78(\mathrm{~b}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), \mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~d}$, $3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.5,156.5$, 80.8, 78.2, 63.5, 54.9, 34.6, 32.7, 28.7, 16.9; MS (FAB) m/z 260 $\left(\mathrm{M}+\mathrm{H}^{+}\right), 204,160,136 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 260.1511, found 260.1506.
(1S,2'S, $4^{\prime} R$)-[2-Allyloxy-1-(4-methyl-5-oxo-tetrahydro-furan-2-yl)-ethyl]-carbamic Acid tert-Butyl Ester (9). Into a solution of $\mathbf{8}(0.2 \mathrm{~g}, 0.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cyclohexane (10 mL) was added 2,2,2-trichloro-acetimidic acid allyl ester (0.33 g , 1.54 mmol) dropwise at $0^{\circ} \mathrm{C}$, followed by trifluoromethanesulfonic acid $(12 \mu \mathrm{~L})$. The mixture was warmed to room temperature and stirred for 5 h . The precipitate was filtered off, and the filtrate was washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt 2/1) of the residue gave $9(0.18 \mathrm{~g}, 80 \%):[\alpha]_{\mathrm{D}}+7.8\left(c 0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.95(\mathrm{~b}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.8$ $(\mathrm{m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H})$, $2.39(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.4,156.7,134.5,117.9,81.0$, 80.7, 72.6, 69.6, 66.4, 34.8, 32.5, 28.7, 16.9; MS (FAB) m/z 300 $\left(\mathrm{M}+\mathrm{H}^{+}\right), 244,200,154 ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 300.1810 , found 300.1816 .
(1S,2S,4R)-(1-Allyloxymethyl-4-butylcarbamoyl-2-hydroxy-pentyl)-carbamic Acid tert-Butyl Ester (10). A mixture of 9 (0.26 $\mathrm{g}, 86 \mu \mathrm{~mol})$ and butylamine $(1.8 \mathrm{~mL})$ was stirred at room temperature for 4 h . Excess butylamine was removed under reduced pressure. The residue was purified by flash chromatography (hexane/AcOEt 2/1) to give $10(0.13 \mathrm{~g}, 40 \%)$: $[\alpha]_{\mathrm{D}}-14$ (c 0.25, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.86(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~m}$, $3 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.24$ $(\mathrm{m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.48-1.32(\mathrm{~m}$,
$4 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.8,156.7,134.3,118.0,80.0,77.6,73.3$, $72.9,70.6,53.4,39.5,38.5,37.7,32.1,28.8,20.5,14.2$; MS (FAB) $m / z 373\left(\mathrm{M}+\mathrm{H}^{+}\right), 273,200,154$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 373.2702$, found 373.2690.
(1S,1'S,2'S,4'R)-[1-(1-Allyloxymethyl-4-butylcarbamoyl-2-hy-droxy-pentylcarbamoyl)-ethyl]-carbamic Acid tert-Butyl Ester (11). Into a solution of $\mathbf{1 0}(0.17 \mathrm{~g}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added TFA (1 mL). The solution was stirred at room temperature for 30 min and then concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and N -Boc alanine $(0.14 \mathrm{~g}, 0.7 \mathrm{mmol})$, PyBOP $(0.36 \mathrm{~g}, 0.7 \mathrm{mmol})$, and diisopropylethylamine (DIEA) ($0.32 \mathrm{~mL}, 1.85 \mathrm{mmol}$) were added consecutively. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 2 h and concentrated, and the residue was treated with 10% citric acid $(2 \mathrm{~mL})$, then extracted with $\operatorname{AcOEt}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (AcOEt) of the residue gave $11(0.17 \mathrm{~g}, 85 \%):[\alpha]_{\mathrm{D}}-25.1(c 0.55, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.67(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.9-5.82$ $(\mathrm{m}, 2 \mathrm{H}), 5.28-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~b}, 1 \mathrm{H}), 4.13(\mathrm{~b}, 1 \mathrm{H}), 3.99-$ $3.92(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~d}, 2 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.24(\mathrm{dd}, 2 \mathrm{H}, J=12.9$, $6.7 \mathrm{~Hz}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{HZ}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.8$, 173.4, 154.7, 134.3, 118.2, 80.5, 77.6, 72.9, 72.5, 70.1, 52.4, 39.6, $38.4,37.8,32.1,28.7,20.5,19.1,17.9,14.2 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 444$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), 370,326,307,154$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{M}$ $+\mathrm{H}^{+}$) 444.3087, found 444.3084 .
($1 S, 1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S, 4^{\prime \prime} R$)-\{2-Allyloxy-1-[1-(1-allyloxymethyl-4-bu-tylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-eth-yl\}-carbamic Acid tert-Butyl Ester (12). Into a solution of 11 $(33 \mathrm{mg}, 0.074 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added TFA (0.33 $\mathrm{mL})$. The mixture was stirred for 30 min and then concentrated in a vacuum. The amine salt was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and N -Boc O-allyl serine ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$) and PyBOP ($77 \mathrm{mg}, 0.15 \mathrm{mmol}$), followed by DIEA ($70 \mu \mathrm{~L}, 0.37$ $\mathrm{mmol})$, were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 2 h , then processed as described above. Flash chromatography $(4 \% \mathrm{MeOH}$ in AcOEt$)$ of the residue gave pure 12 ($28 \mathrm{mg}, 67 \%$): $[\alpha]_{\mathrm{D}}-21(c 1.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.0(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 6.67(\mathrm{~b}, 1 \mathrm{H}), 6.1(\mathrm{~b}, 1 \mathrm{H})$, $5.85(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 5.28-5.16(\mathrm{~m}, 4 \mathrm{H}), 4.36$ $(\mathrm{b}, 1 \mathrm{H}), 3.98-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.55(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{~m}$, $1 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.8,172.7,170.5,156.1,134.5,134.3$, $118.1,117.9,81.0,72.7,72.5,69.8,54.7,52.3,46.8,39.5,38.5$, $37.7,32.1,28.7,27.7,26.7,20.5,19.1,14.2$; MS (FAB) m/z 593 $\left(\mathrm{M}+\mathrm{Na}^{+}\right), 571\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{8}(\mathrm{M}+$ H^{+}) 571.3693, found 571.3699.
(1S, $1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S, 4^{\prime \prime} R$)-\{1-[1-(1-Allyloxymethyl-4-butylcarbam-oyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-2-allylsulfa-nyl-ethyl\}-carbamic Acid tert-Butyl Ester (13). Into a solution of $\mathbf{1 1}(120 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was added TFA $(1.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then concentrated in a vacuum. The amine salt was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and N-Boc S-allyl cysteine $(130 \mathrm{mg}, 0.0 .47 \mathrm{mmol})$ and $\operatorname{PyBOP}(0.21 \mathrm{~g}, 0.45 \mathrm{mmol})$, followed by DIEA ($230 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$), were added. The mixture was processed as described above. Flash chromatography $(2 \% \mathrm{MeOH}$ in AcOEt) of the residue gave pure $13(0.12 \mathrm{~g}, 75 \%):[\alpha]_{\mathrm{D}}-62.7$ $(c 0.4, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.0(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 6.85(\mathrm{~b}, 1 \mathrm{H}), 6.08(\mathrm{~b}, 1 \mathrm{H}), 5.86-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$, $5.26-5.12(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.0-3.92(\mathrm{~m}, 4 \mathrm{H})$, $3.59(\mathrm{~d}, 2 \mathrm{H}, J=4.6 \mathrm{~Hz}), 3.23(\mathrm{dd}, 2 \mathrm{H}, J=13.0,6.9), 3.15(\mathrm{~d}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.6,172.6,170.9,156.2,134.5,134.0$, $118.6,117.9,81.2,80.2,72.7,71.9,70.0,55.9,54.3,49.9,49.1$,
$39.6,38.5,37.7,33.2,31.9,28.7,20.5,18.1,14.2 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $587\left(\mathrm{M}+\mathrm{H}^{+}\right), 513,414,154$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}$ $+\mathrm{H}^{+}$587.3492, found 587.3495.
($2 R, 4 S, 5 S, 2^{\prime} S, 2^{\prime \prime} S$)-5-[2-(2-Acetylamino-3-allylsulfanyl-propio-nylamino)-propionylamino]-6-allyloxy-4-hydroxy-2-methyl-hexanoic Acid Butylamide (14). Into a solution of 11 (74 mg, 0.16 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was added TFA $(0.4 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then concentrated in a vacuum. The residue was treated with $\operatorname{AcOEt}(10 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{NaHCO}_{3}$, dried, and concentrated in a vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}(1 / 1,6 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. N-Ac S-allyl cysteine $(49 \mathrm{mg}, 0.32 \mathrm{mmol})$ and 1-hydroxybenzotriazole $(\mathrm{HOBt})(33 \mathrm{mg}, 0.32 \mathrm{mmol})$, followed by 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (EDCI; 46 mg , 0.32 mmol), were added. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 2 days, and then diluted with $\mathrm{AcOEt}(5 \mathrm{~mL}) .1 \mathrm{~N} \mathrm{HCl}$ was added to pH 5 , and the mixture was extracted with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$, then processed as described above. Flash chromatography (8% MeOH in AcOEt) of the residue gave $14(23 \mathrm{mg}, 27 \%):[\alpha]_{\mathrm{D}}-31.2$ $(c \quad 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.48(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 5.91-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.10(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H})$, $4.36(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.19(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~b}, 1 \mathrm{H}), 2.0$ $(\mathrm{s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.8,172.5$, 171.8, 135.1, 134.3, 117.1, 116.2, 71.9, 69.4, 67.8, 53.5, 49.8, 49.6, $39.1,38.1,37.6,34.4,32.0,21.4,20.1,17.8,17.1,13.2 ; \mathrm{MS}$ (FAB) $m / z 529\left(\mathrm{M}+\mathrm{H}^{+}\right), 511,307,154$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 529.3069$, found 529.3066 .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dioxa-4,7-diaza-cyclopentadec-13-en-9-yl]-carbamic Acid tert-Butyl Ester (15). Into a solution of 12 (25 $\mathrm{mg}, 0.044 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was added a solution of second generation Grubbs catalyst ${ }^{14}(4 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was stirred at room temperature overnight and then concentrated. The residue was purified by flash chromatography ($4 \% \mathrm{MeOH}$ in AcOEt) to give 15 ($8 \mathrm{mg}, 34 \%$): $[\alpha]_{\mathrm{D}}-29$ (c 0.4, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.65(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}$, $1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.90(\mathrm{~m}, 5 \mathrm{H}), 3.69-3.50(\mathrm{~m}, 5 \mathrm{H}), 3.18-$ $3.13(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.34$ $(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 176.4,172.1$, $170.8,155.1,127.5,126.6,79.2,68.3,68.1,67.8,67.2,52.6,52.0$, $47.8,37.5,36.6,36.0,33.8,30.1,26.1,25.2,24.6,18.5,11.6 ; \mathrm{MS}$ (FAB) m/z $543\left(\mathrm{M}+\mathrm{H}^{+}\right), 469,425,297,154$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right) 543.3394$, found 543.3396; LC/MS retention time [A] $5.15 \mathrm{~min},[\mathrm{~B}] 7.20 \mathrm{~min}$.
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dioxa-4,7-diaza-cyclopentadec-9-yl]-carbamic Acid tert-Butyl Ester (16). A mixture of 15 ($9 \mathrm{mg}, 0.016$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(16 \mathrm{mg})$ in AcOEt $(2 \mathrm{~mL})$ was charged with H_{2} (balloon) and stirred overnight. The suspension was filtered through a pad of Celite washed with AcOEt, the combined filtrate was concentrated, and the residue was purified by flash chromatography ($8 \% \mathrm{MeOH}$ in AcOEt) to give $16(8.2 \mathrm{mg}, 91 \%):[\alpha]_{\mathrm{D}}$ -38.5 (c 0.4, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 4.64(\mathrm{~m}$, $1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.39(\mathrm{~m}$, $7 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 176.3,172.1,170.1$, $154.9,78.2,69.8,69.3,69.0,68.0,67.6,52.6,52.1,37.5,363,36.0$, $26.1,25.3,25.1,24.5,18.5,16.4,15.7,11.6$; MS (FAB) m/z 545 $\left(\mathrm{M}+\mathrm{H}^{+}\right), 3.7,289,154 ;$ HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 545.3550 , found 545.3546 ; LC/MS retention time [A] 5.23 min , [B] 7.39 min .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1-oxa-11-thia-4,7-diaza-cyclopentadec-13-en-9-yl]-carbamic Acid tert-Butyl Ester (17). Into a solution of 13 $(16 \mathrm{mg}, 0.023 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added second
generation Grubbs catalyst ${ }^{14}(4 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$. The mixture was stirred at room temperature overnight, additional catalyst (2 mg , $2.25 \mu \mathrm{~mol}$) was added, and the mixture was stirred for 6 h . A few drops of MeOH was added, the mixture was concentrated, and the residue was purified by flash chromatography ($4 \% \mathrm{MeOH}$ in $\mathrm{AcOEt})$ to give 17 ($3.1 \mathrm{mg}, 25 \%$): $[\alpha]_{\mathrm{D}}-58.5$ (c $\left.0.4, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.22-$ $3.11(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.48-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 177.9,173.0,172.7,156.8,130.5,129.5,79.6,70.4,70.2$, $69.0,54.1,54.0,50.7,39.0,38.0,37.6,32.5,31.6,27.7,26.5,20.1$, 18.0, 13.2; MS (FAB) m/z $559\left(\mathrm{M}+\mathrm{H}^{+}\right), 485,307,154$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 559.3165$, found 559.3166 ; LC/ MS retention time [A] 19.43 min , [B] 27.15 min .
(3S,6S,9S,1'S,3'R)-4-(9-Acetylamino-6-methyl-5,8-dioxo-1-oxa-11-thia-4,7-diaza-cyclopentadec-13-en-3-yl)-N-butyl-4-hy-droxy-2-methyl-butyramide (18). Into a solution of $14(21 \mathrm{mg}$, $0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added second generation Grubbs catalyst ${ }^{14}(7 \mathrm{mg}, 8 \mu \mathrm{~mol})$. The mixture was stirred at room temperature overnight, additional catalyst ($3.5 \mathrm{mg}, 4 \mu \mathrm{~mol}$) was added, and the mixture was stirred for 6 h . A few drops of MeOH was added, and the mixture was concentrated. The residue was flash purified by flash chromatography $(10 \% \mathrm{MeOH}$ in AcOEt$)$ to give 18 ($4.5 \mathrm{mg}, 23 \%$): ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.84$ (b, 1H), $7.2(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H})$, $4.36(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.21-2.87$ $(\mathrm{m}, 3 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H})$, $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.94$ $(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 125 MHz$) \delta 177.6,172.7$, $172.1,171.8,130.4,128.9,70.1,69.9,68.7,60.2,53.6,52.7,48.5$, $38.7,37.6,31.8,31.3,29.4,20.9,19.7,17.6,15.4,13.1$; MS (FAB) $m / z 501\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 500.2741, found 500.2734; LC/MS retention time [A] 3.98 min , [B] 6.51 min .
(1S,2'S, $4^{\prime} R$)-[2-Benzylsulfanyl-1-(4-methyl-5-oxo-tetrahydro-furan-2-yl)-ethyl]-carbamic Acid tert-Butyl Ester (19). Into a solution of $\mathbf{8}(0.2 \mathrm{~g}, 0.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ were added imidazole $(0.11 \mathrm{~g}, 1.5 \mathrm{mmol}), 1,1^{\prime}$-(azodicarbonyl)dipiperidine (ADDP) ($0.39 \mathrm{~g}, 1.5 \mathrm{mmol})$, and benzyl mercaptan $(0.4 \mathrm{~mL}, 3.0$ mmol), followed by $\mathrm{PMe}_{3}(1 \mathrm{M}$ in toluene, 1.54 mL) dropwise. The mixture was stirred at room temperature for 1 day, hexane (12 mL) was added, and the precipitate was removed by filtration. The filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 3/1) to give the product 19 (0.19 $\mathrm{g}, 66 \%):[\alpha]_{\mathrm{D}}+9.2\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.77(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.3), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=16.3,8.1 \mathrm{~Hz}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}$, $J=9.5,7.1 \mathrm{~Hz}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.45$ $(\mathrm{s}, 9 \mathrm{H}), 1.26(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $180.5,156.4,138.1,129.5,128.9,127.6,80.6,78.1,52.8,36.4$, 34.8, 33.9, 32.7, 28.7, 16.9; MS (FAB) $m / z 366\left(\mathrm{M}+\mathrm{H}^{+}\right), 310$, 266, 186; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ (M) 364.1569, found 364.1563.
(1S,2S,4R)-(1-Benzylsulfanylmethyl-4-butylcarbamoyl-2-hy-droxy-pentyl)-carbamic Acid tert-Butyl Ester (20). Trimethyl aluminum $(1.0 \mathrm{M}$ in toluene, 0.22 mL$)$ was added to a solution of butylamine $(0.088 \mathrm{~mL}, 0.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and stirred for 15 min . A solution of $19(82 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ mL) was added, and the stirring was continued for 15 min . The mixture was heated to $45{ }^{\circ} \mathrm{C}$ until TLC indicated completion of reaction. After cooling, $5 \% \mathrm{HCl}$ was added, and the clear solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$; the combined organic layers were washed with saturated NaHCO_{3} and brine, dried, and concentrated. Flash chromatography (hexane/AcOEt $1 / 1$) of the residue gave pure $20(85 \mathrm{mg}, 88 \%):[\alpha]_{\mathrm{D}}+3.3\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~b}, 1 \mathrm{H}), 5.04$ $(\mathrm{d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.22$ $(\mathrm{m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.34(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.5,156.7,138.7,129.5,128.9$, $127.4,79.9,68.4,54.1,39.7,38.6,38.2,36.7,34.2,32.1,28.8,20.5$, 17.5, 14.2; MS (FAB) m/z $439\left(\mathrm{M}+\mathrm{H}^{+}\right), 339,230,172,154$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$439.2637, found 439.2642.
(1S, $1^{\prime} S, 2^{\prime} S, 4^{\prime} R$)-[1-(1-Benzylsulfanylmethyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethyl]-carbamic Acid tert-Butyl Ester (21). Into a solution of $20(0.084 \mathrm{~g}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then concentrated in a vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{N}$-Boc alanine $(0.079 \mathrm{~g}, 0.38 \mathrm{mmol})$, PyBOP $(0.21 \mathrm{~g}, 0.38 \mathrm{mmol})$, and DIEA ($0.18 \mathrm{~mL}, 0.9 \mathrm{mmol}$) were added consecutively. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h and then concentrated. The residue was treated with 10% citric acid (2 mL) and extracted with AcOEt $(3 \times 20 \mathrm{~mL})$; the combined organic layers were washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (AcOEt/hexane $4 / 1)$ of the residue gave pure $21(88 \mathrm{mg}, 90 \%):[\alpha]_{\mathrm{D}}-53.1(c$ 0.96, MeOH); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H})$, $6.80(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.41(\mathrm{bs}, 1 \mathrm{H}), 5.26(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.51$ $(\mathrm{m}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.29(\mathrm{~m}, 5 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.6,174.0,155.7,138.6$, $129.4,128.9,127.4,80.6,68.5,60.9,52.6,51.2,39.8,38.6,38.0$, $36.7,33.8,31.9,28.7,20.5,17.6,14.6,14.2$, MS (FAB) m/z 510 $\left(\mathrm{M}+\mathrm{H}^{+}\right), 492,436,392,307,154$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 510.2975$, found 510.2979.
($1 S, 1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S, 4^{\prime \prime} R$)-\{2-Benzylsulfanyl-1-[1-(1-benzylsulfa-nylmethyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-eth-ylcarbamoyl]-ethyl\}-carbamic Acid tert-Butyl Ester (22). Into a solution of $21(0.09 \mathrm{~g}, 0.176 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then concentrated in a vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. N-Boc S-benzyl cysteine $(0.1 \mathrm{~g}, 0.36 \mathrm{mmol}), \operatorname{PyBOP}(0.19 \mathrm{~g}, 0.36 \mathrm{mmol})$, and DIEA ($0.17 \mathrm{~mL}, 0.82 \mathrm{mmol}$) were added consecutively. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h and concentrated, the residue was treated with 10% citric acid $(2 \mathrm{~mL})$ and extracted with AcOEt $(3 \times 20 \mathrm{~mL})$, and the combined organic layers were washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (AcOEt) of the residue gave 22 (70 mg, 57\%): $[\alpha]_{\mathrm{D}}-31.8(c 0.76, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 7.34-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H})$, $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~m}$, $2 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.32$ $(\mathrm{m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ 178.0, 177.8, 172.3, 156.1, 138.7, 138.5, 129.2, 128.5, 127.4, 126.9, $126.3,79.9,68.9,54.3,52.9,49.9,39.2,39.1,38.3,37.7,37.6,36.0$, $35.7,33.4,32.6,31.6,27.7,20.1,17.7,17.3,13.2$; MS (FAB) m / z $704\left(\mathrm{M}+\mathrm{H}^{+}\right), 629,307,154$; HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}$ $\left.+\mathrm{H}^{+}\right) 703.3556$, found 703.3555 .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-9-yl]-carbamic Acid tert-Butyl Ester (23). Into a solution of 22 (42 mg , 0.06 mmol) in liquid ammonia (300 mL) was added sodium until a blue color persisted for about 10 min . 1,4-Dibromobutane (0.016 $\mathrm{mL}, 0.12 \mathrm{mmol}$) was added, and the mixture was warmed at reflux for 2 h . Ammonia was removed under a stream of argon; the residue was dissolved in AcOEt, washed with 10% citric acid, saturated NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography of the residue gave pure $23(13 \mathrm{mg}, 38 \%):[\alpha]_{\mathrm{D}}$ -17.5 (c 0.4, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 4.55(\mathrm{~m}$, $1 \mathrm{H}), 4.36(\mathrm{bs}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 3.18$ $(\mathrm{m}, 4 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 6 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H})$, $1.71(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0,174.1,171.5,156.8,80.1,70.4,62.4$, $61.1,54.3,53.6,39.0,38.0,37.8,35.2,31.6,31.6,30.6,29.8,27.9$,
27.6, 20.1, 17.9, 13.2; MS (FAB) m/z $577\left(\mathrm{M}+\mathrm{H}^{+}\right), 503,307$, 154; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 577.3105$, found 577.3106; LC/MS retention time [A] 19.94 min , [B] 7.84 min .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclohexadec-9-yl]-carbamic Acid tert-Butyl Ester (24). Compound 24 (14 mg, 46\%) was prepared from $22(36 \mathrm{mg}, 0.051 \mathrm{mmol})$ and 1,5-dibromopentane ($0.017 \mathrm{~mL}, 0.1 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-31.8(c 0.68, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.45(\mathrm{~m}, 6 \mathrm{H})$, $1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.6,171.7,156.2,79.8$, $69.3,57.8,53.9,53.1,49.3,46.5,46.4,39.0,37.8,34.4,31.6,28.1$, 27.9, 27.6, 26.8, 26.4, 26.3, 20.1, 13.2; MS (FAB) m/z $591(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right), 563,542 ;$ HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$591.3257, found 591.3257; LC/MS retention time [A] 22.80 min , [B] 8.11 \min.
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cycloheptadec-9-yl]-carbamic Acid tert-Butyl Ester (25). Compound 25 (14 mg, 43\%) was prepared from $22(38 \mathrm{mg}, 0.054 \mathrm{mmol})$ and 1,6-dibromohexane ($0.014 \mathrm{~mL}, 0.1 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-26(c 0.6, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 6 \mathrm{H}), 1.70-$ $1.50(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 10 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.0,173.4,171.8,156.3,79.8,69.0$, $54.3,53.7,49.4,39.0,38.0,37.7,34.5,33.1,31.9,31.6,30.8,29.1$, 28.9, 27.6, 27.1, 26.5, 20.1, 17.9, 17.8, 13.2; MS (FAB) m/z 605 $\left(\mathrm{M}+\mathrm{H}^{+}\right), 531,307,154 ;$ HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right) 605.3420$, found 605.3421 ; LC/MS retention time [A] 23.03 min, [B] 31.21 min .
(5S,8S,11S, 1'S, 3'R)-[5-(3-Butylcarbamoyl-1-hydroxy-butyl)-8-methyl-7,10-dioxo-3,13-dithia-6,9-diaza-bicyclo[13.2.2]nonadeca-1(18),15(19),16-trien-11-yl]-carbamic Acid tert-Butyl Ester (26). Compound 26 ($20 \mathrm{mg}, 49 \%$) was prepared from $22(46 \mathrm{mg}, 0.065$ mmol) and 1,4-bis-bromomethyl-benzene ($35 \mathrm{mg}, 0.12 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{D}$ -25.9 (c 0.5, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.37-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.57(\mathrm{~m}$, $5 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.55-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (MeOD, 100 MHz$) \delta 179.5,173.8,172.1,156.5,137.8,131.6$, $131.3,130.7,81.0,68.5,62.1,54.4,52.9,40.5,40.1,39.1,34.9$, $34.8,33.1,31.1,29.1,21.6,19.0,14.6$; MS (ESI) $m / z 625(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right), 607,507,452 ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 625.3094, found 625.3121; LC/MS retention time [A] 23.58 min , [B] 8.47 min .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en(cis)-9-yl]-carbamic Acid tert-Butyl Ester (27). Compound 27 (15 mg, 40%) was prepared from $22(46 \mathrm{mg}, 0.065 \mathrm{mmol})$ and cis-1,4-dibromo-2-butene $(28 \mathrm{mg}, 0.13 \mathrm{mmol})$ according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-56.1(c 0.34, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $(\mathrm{MeOD}, 400 \mathrm{MHz}) \delta 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.51$ $(\mathrm{m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.17(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}$, $2 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.5,172.5,156.6,130.4$, $126.9,80.2,70.4,56.3,54.1,49.5,39.1,38.1,37.7,35.0,31.6,30.9$, 29.2, 28.4, 27.6, 20.1, 17.9, 16.5, 13.2; MS (FAB) m/z $575(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right)$, 557, 457, 402; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 575.2937, found 575.2947; LC/MS retention time [A] 5.79 min , [B] 7.60 min .
(3S,6S,9S,1'S,3'R)-[3-(3-Butylcarbamoyl-1-hydroxy-butyl)-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en(trans)-

9-yl]-carbamic Acid tert-Butyl Ester (28). Compound 28 (10 mg, 30%) was prepared from $22(42 \mathrm{mg}, 0.06 \mathrm{mmol})$ and trans-1,4-dibromo-2-butene ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-42.5(c 0.24, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 6.74(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.55(\mathrm{~m}$, $2 \mathrm{H}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=14.6,7.5 \mathrm{~Hz}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H})$, $3.67(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 5 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, 1 \mathrm{H}, J=13.4,7.0 \mathrm{~Hz}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}$, $4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ 178.0, 173.6, 172.2, 156.4, 129.6, 121.4, 80.1, 69.6, 54.6, 53.2, $48.8,39.1,38.2,37.7,33.5,32.7,31.6,29.2,27.6,27.2,20.1,17.8$, 16.3, 13.2; MS (FAB) m/z $575\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 557, 457, 402; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 575.2937$, found 575.2953; LC/ MS retention time [A] 5.75 min , [B] 7.61 min .
(3S,6S,9S,1'S,3'R)-4-(9-Acetylamino-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-3-yl)- N-butyl-4-hydroxy-2-meth-yl-butyramide (29). Into a solution of $23(12 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(0.33 \mathrm{~mL})$; the mixture was stirred at room temperature for 30 min and then concentrated in a vacuum. The residue was dissolved in DMF (2 mL) and cooled to $0^{\circ} \mathrm{C}$, $\mathrm{Ac}_{2} \mathrm{O}(0.03 \mathrm{~mL}, 0.2 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(30 \mathrm{mg}, 0.35 \mathrm{mmol})$ were added consecutively, and the mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 3 h . Solvent was removed under reduced pressure, the residue was treated with 10% citric acid and extracted with AcOEt, and the combined organic layers were washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography of the residue gave pure $29(5.4 \mathrm{mg}, 50 \%)$: $[\alpha]_{\mathrm{D}}-17.5(c 0.4, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 4.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H})$, $2.95-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.50(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~m}$, $4 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / z 519\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 338, 258; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 519.2669$, found 519.2670; LC/MS retention time [A] $4.38 \mathrm{~min},[B] 6.83 \mathrm{~min}$.
(3S,6S,9S,1'S,3'R)-4-(9-Acetylamino-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclohexadec-3-yl)- N-butyl-4-hydroxy-2-methylbutyramide (30). Compound $\mathbf{3 0}(2 \mathrm{mg}, 55 \%)$ was prepared from $24(4 \mathrm{mg}, 0.007 \mathrm{mmol})$ and acetic anhydride $(0.01 \mathrm{~mL}, 0.07 \mathrm{mmol})$ according to the general procedure for the preparation of 29: $[\alpha]_{\mathrm{D}}$ -28.3 (c 0.3, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 4.55(\mathrm{~m}$, $1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.93-$ $2.80(\mathrm{~m}, 4 \mathrm{H}), 2.67-2.46(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.56(\mathrm{~m}$, $4 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$)$ $\delta 179.8,173.5,171.8,171.2,69.4,63.1,53.2,53.0,49.3,46.4$, $38.1,37.7,33.8,32.7,31.9,31.6,30.6,28.0,26.7,21.4,20.1,17.9$, 17.8, 13.2; MS (ESI) m/z $533\left(\mathrm{M}+\mathrm{H}^{+}\right), 515,460$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 533.2831$, found 533.2850; LC/MS retention time [A] 16.90 min , [B] 7.19 min .
(3S,6S,9S,1'S,3'R)-4-(9-Acetylamino-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cycloheptadec-3-yl)- N-butyl-4-hydroxy-2-meth-yl-butyramide (31). Compound $31(5 \mathrm{mg}, 60 \%)$ was prepared from $\mathbf{2 5}(9 \mathrm{mg}, 0.013 \mathrm{mmol})$ and acetic anhydride $(0.016 \mathrm{~mL}, 0.13 \mathrm{mmol})$ according to the general procedure for the preparation of 29: $[\alpha]_{\mathrm{D}}$ -37.1 (c 0.35, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 4.52$ (m, $1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.90-$ $2.74(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.50(\mathrm{~m}$, $5 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$)$ $\delta 177.9,173.4,171.9,171.2,69.1,64.6,53.7,53.6,49.4,39.0$, $37.7,34.1,31.9,31.6,29.1,28.9,27.0,26.5,21.4,20.1,17.9,17.8$, 13.2; MS (ESI) m/z $547\left(\mathrm{M}+\mathrm{H}^{+}\right), 529,474$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$547.2987, found 547.2975; LC/MS retention time [A] 18.59 min , [B] 27.39 min .
(2R,4S,5'S, $8^{\prime} S, 11^{\prime} S$)-4-(11-Acetylamino-8-methyl-7,10-dioxo-3,13-dithia-6,9-diaza-bicyclo[13.2.2]nonadeca-1(18),15(19),16-trien-5-yl)- N-butyl-4-hydroxy-2-methyl-butyramide (32). Compound $32(4 \mathrm{mg}, 45 \%)$ was prepared from $26(10 \mathrm{mg}, 0.016 \mathrm{mmol})$ and acetic anhydride $(0.015 \mathrm{~mL}, 0.16 \mathrm{mmol})$ according to the
general procedure for the preparation of 29: $[\alpha]_{\mathrm{D}}-41$ (c 0.3, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 4.34-$ $(\mathrm{m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{~m}, 3 \mathrm{H})$, $2.32(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.32$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz})$; MS (ESI) $m / z 567\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 567.2669$, found 567.2669 ; LC/MS retention time [A] 5.26 min , [B] 7.60 min .
(2R,4S,5S,2'S)-6-Benzylsulfanyl-5-[2-(3-benzylsulfanyl-propio-nylamino)-propionylamino]-4-hydroxy-2-methyl-hexanoic Acid Butylamide (33). Into a solution of $21(0.15 \mathrm{~g}, 0.29 \mathrm{mmol})$ in $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was added TFA $(0.75 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and concentrated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, then treated with 3-benzylsulfanyl propionic acid $(0.11 \mathrm{~g}, 0.58 \mathrm{mmol})$, PyBOP (0.23 $\mathrm{g}, 0.44 \mathrm{mmol})$, and DIEA $(0.28 \mathrm{~mL}, 1.45 \mathrm{mmol})$ successively. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h and concentrated, the residue was treated with 10% citric acid (2 mL) and extracted with $\operatorname{AcOEt}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography $(4 \% \mathrm{MeOH}$ in $\mathrm{AcOEt})$ of the residue gave pure $33(120 \mathrm{mg}, 70 \%):{ }^{1} \mathrm{H}$ NMR $(\mathrm{MeOD}, 400 \mathrm{MHz}) \delta 7.41-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~m}, 5 \mathrm{H}), 3.21(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 4 \mathrm{H}), 1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (MeOD, 100 MHz$) \delta 177.9,174.1,173.3,138.9,129.2,129.0$, $128.5,128.4,126.9,126.1,125.5,68.7,64.2,54.8,52.8,49.8,46.9$, $39.1,38.3,37.7,35.9,35.7,31.6,26.9,20.1,17.7,17.3,13.2$; MS (FAB) m/z $588\left(\mathrm{M}+\mathrm{H}^{+}\right), 570,460,307$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 588.2929$, found 588.2922.
(3S,6S,1'S,3'R)-N-Butyl-4-hydroxy-2-methyl-4-(6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en-3-yl)-butyramide (34). Compound 34 ($11 \mathrm{mg}, 51 \%$) was prepared from 33 (28 mg , 0.047 mmol) and cis-1,4-dibromo-2-butene ($0.025 \mathrm{~mL}, 0.15 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{D}$ $-30(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.78(\mathrm{~b}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, 1 \mathrm{H}, J=9.1), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, 1 \mathrm{H}, J$ $=14.5,7.2 \mathrm{~Hz}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.6,7.0 \mathrm{~Hz}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 4 \mathrm{H})$, $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.12$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, $100 \mathrm{MHz}) \delta 176.1,172.8,172.1,130.0,128.5,70.2,56.5,49.0$, $39.0,38.2,37.7,36.7,32.2,32.0,29.6,29.3,27.8,20.4,19.7,18.1$, 14.6; MS (FAB) m/z $460\left(\mathrm{M}+\mathrm{H}^{+}\right), 307,154$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 460.2304$, found $460.2301 ; ~ \mathrm{LC} / \mathrm{MS}$ retention time [A] 16.14 min , [B] 6.83 min .
(3S,6S,1'S,3'R)-N-Butyl-4-hydroxy-2-methyl-4-(6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en-3-yl)-butyramide (35). Compound $35(8 \mathrm{mg}, 45 \%)$ was prepared from $33(23 \mathrm{mg}$, 0.039 mmol) and trans-1,4-dibromo-2-butene ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to the general procedure for the preparation of 23: $[\alpha]_{D}$ $-24(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.56(\mathrm{~m}, 2 \mathrm{H})$, $4.44(\mathrm{dd}, 1 \mathrm{H}, J=14.2,7.1 \mathrm{~Hz}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.22-$ $3.02(\mathrm{~m}, 6 \mathrm{H}), 2.84(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$)$ $\delta 177.9,173.6,173.5,130.4,128.7,69.2,54.3,49.3,39.0,38.4$, $37.8,35.5,32.9,32.8,31.6,31.1,28.0,20.1,17.9,16.0,13.2$; MS (FAB) m/z $460\left(\mathrm{M}+\mathrm{H}^{+}\right), 338,307,154$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 460.2304$, found 460.2307 ; LC/MS retention time [A] 15.96 min , [B] 6.95 min .
(2R,4S,5S)-6-Benzylsulfanyl-5-tert-butoxycarbonylamino-4-(tert-butyl-dimethyl-silanyloxy)-2-methyl-hexanoic Acid (36). Into a solution of $19(0.11 \mathrm{~g}, 0.3 \mathrm{mmol})$ in 1,2-dimethoxyethane $(1.8 \mathrm{~mL})$ was added $1 \mathrm{~N} \mathrm{LiOH}(1.8 \mathrm{~mL})$. The mixture was stirred at room temperature for 3 h and then partitioned between 10% citric acid $(2 \mathrm{~mL})$ and $\operatorname{AcOEt}(20 \mathrm{~mL})$. The organic layers were washed with brine, dried over MgSO_{4}, and concentrated. The residue was dissolved in DMF (2 mL), and then $\mathrm{TBSCl}(0.27 \mathrm{~g}, 1.8 \mathrm{mmol})$ and imidazole ($0.25 \mathrm{~g}, 3.6 \mathrm{mmol}$) were added. The mixture was stirred
at room temperature for 24 h , and then $\mathrm{MeOH}(2 \mathrm{~mL})$ was added. After being stirred for 2 h , the solution was concentrated, and the residue was treated with 10% citric acid $(2 \mathrm{~mL})$ and extracted with AcOEt $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Flash chromatography (hexane/AcOEt 2/1) of the residue gave $36(0.1 \mathrm{~g}, 91 \%)$, and $19(30 \mathrm{mg})$ was also recovered: $[\alpha]_{\mathrm{D}}+28.1\left(c 1.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CHCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 3 \mathrm{H})$, $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.8$, $156.5,138.5,129.5,128.9,127.5,80.3,69.9,51.9,38.0,36.6,36.1$, $33.8,28.8,26.3,18.4,16.9,-3.9,-4.2$; MS (FAB) m/z $498(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right), 398,154 ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{SSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 498.2709$, found 498.2708.
(1S,2S,4R,1'S)-[1-Benzylsulfanylmethyl-4-(1-butylcarbamoyl-2-methyl-propylcarbamoyl)-2-(tert-butyldimethylsilanyloxy)-pentyl]-carbamic Acid tert-Butyl Ester (37). Into a solution of $36(0.22 \mathrm{~g}, 0.44 \mathrm{mmol})$ and $\mathrm{Val} N-n-\mathrm{Bu}(0.12 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added PyBOP $(0.28 \mathrm{~g}, 0.53 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, followed by DIEA $(0.38 \mathrm{~mL}, 2.2 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h , then 10% citric acid $(2 \mathrm{~mL})$ was added, and the mixture was extracted with AcOEt $(3 \times 30$ mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Flash chromatography (hexane/ AcOEt 3/1) of the residue gave $37(0.2 \mathrm{~g}, 86 \%):[\alpha]_{\mathrm{D}}+4.7(c 0.9$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.74$ $(\mathrm{m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.2$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H})$, $2.45(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}), 0.95(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.5,171.6,156.4,138.6,129.5$, $128.9,127.5,80.0,69.7,59.1,51.4,39.5,38.7,37.6,36.5,34.1$, 32.0, 31.2, 28.8, 28.7, 26.2, 20.5, 19.7, 19.0, 18.4, 16.7, 14.1, -3.7, -4.3; MS (FAB) m/z $652\left(\mathrm{M}+\mathrm{H}^{+}\right), 552$; HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 652.4188$, found 652.4188.
(1S,2S,4R,1'S)-[1-Benzylsulfanylmethyl-4-(1-butylcarbamoyl-2-methyl-propylcarbamoyl)-2-hydroxy-pentyl]-carbamic Acid tert-Butyl Ester (38). In procedure 1, into a solution of 37 (0.2 g , $0.3 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ was added p-toluenesulfonic acid ($91 \mathrm{mg}, 0.33 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h , then saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added, and the mixture was extracted with $\operatorname{AcOEt}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Flash chromatography (hexane/AcOEt 3/1) of the residue gave $38(80 \mathrm{mg}, 50 \%)$. In procedure 2 , into a solution of $19(56 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene $(1.2 \mathrm{~mL})$ was added Val $N-n-$ $\mathrm{Bu}(87 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 2-hydroxypyridine ($16 \mathrm{mg}, 0.17 \mathrm{mmol}$). The mixture was heated to reflux for 3 days. After cooling, the solvent was evaporated; the residue was purified by flash chromatography (hexane/AcOEt 3/1, 1/2) to give $38(53 \mathrm{mg}, 66 \%):[\alpha]_{\mathrm{D}}$ -28.2 (c 0.9, MeOD); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.34-7.23$ $(\mathrm{m}, 5 \mathrm{H}), 6.14(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.74$ (s, 2H), $3.63(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J$ $=13.9,7.0 \mathrm{~Hz}), 2.45(\mathrm{dd}, 2 \mathrm{H}, J=13.7,7.5 \mathrm{~Hz}), 2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.94(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ $177.9,172.6,157.4,138.8,129.2,128.4,126.9,79.2,69.2,59.4$, 54.2, 39.0, 38.3, 37.5, 35.5, 32.9, 31.5, 31.0, 27.8, 20.1, 18.9, 18.2, 17.7, 13.1; MS (FAB) $m / z 538\left(\mathrm{M}+\mathrm{H}^{+}\right), 438,307,154$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$538.3301, found 538.3307.
($\left.1 S, 2 S, 4 R, 1^{\prime} S, 1^{\prime \prime} S\right)$-\{1-[1-Benzylsulfanylmethyl-4-(1-butylcar-bamoyl-2-methyl-propylcarbamoyl)-2-hydroxy-pentylcarbam-oyl]-ethyl\}-carbamic Acid tert-Butyl Ester (39). Into a solution of $\mathbf{3 8}(70 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA (0.5 mL). The mixture was stirred at room temperature for 30 min and then concentrated under vacuum. The residue was dissolved in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and N-Boc alanine $(0.05 \mathrm{~g}, 0.26$ $\mathrm{mmol}), \operatorname{PyBOP}(0.1 \mathrm{~g}, 0.2 \mathrm{mmol})$, and DIEA $(0.11 \mathrm{~mL}, 0.65 \mathrm{mmol})$ were added consecutively. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room
temperature for 3 h and then concentrated. The residue was treated with 10% citric acid $(2 \mathrm{~mL})$ and extracted with AcOEt $(3 \times 20$ mL). The combined organic layers were washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (AcOEt /hexane $2 / 1$) of the residue gave pure 39 (65 mg, 82\%): $[\alpha]_{\mathrm{D}}-49.2$ (c 0.9, MeOD); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 $\mathrm{MHz}) \delta 8.01(\mathrm{~b}, 1 \mathrm{H}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.26-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, 1 \mathrm{H}$, $J=13.7,7.4 \mathrm{~Hz}), 2.50(\mathrm{dd}, 2 \mathrm{H}, J=13.8,7.2 \mathrm{~Hz}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.11$ $(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.94(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz) $\delta 177.9,175.1,172.7,156.4,138.7,129.2,128.5,126.9,79.6,68.5$, $59.6,52.6,51.1,39.2,38.6,37.5,35.5,32.7,31.5,31.0,27.8,20.1$, 18.9, 18.2, 17.5, 16.9, 13.1; MS (FAB) $m / z 609\left(\mathrm{M}+\mathrm{H}^{+}\right), 536$, 436, 307, 154; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 609.3686$, found 609.3682 .
(1S, $1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S, 4^{\prime \prime} R, 1^{\prime \prime \prime} S$)-(2-Benzylsulfanyl-1-\{1-[1-benzylsul-fanylmethyl-4-(1-butylcarbamoyl-2-methyl-propylcarbamoyl)-2-hydroxy-pentylcarbamoyl]-ethylcarbamoyl\}-ethyl)-carbamic Acid tert-Butyl Ester (40). Into a solution of 39 ($0.065 \mathrm{~g}, 0.11$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then concentrated under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . N$-Boc S-benzyl cysteine $(0.067 \mathrm{~g}, 0.22 \mathrm{mmol})$, PyBOP ($0.083 \mathrm{~g}, 0.17 \mathrm{mmol}$), and DIEA ($0.093 \mathrm{~mL}, 0.55 \mathrm{mmol}$) were added consecutively. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 3 h and then concentrated. Processing as described for 39 gave a residue, which was purified by flash chromatography (AcOEt) to give pure $40(52 \mathrm{mg}, 61 \%):[\alpha]_{\mathrm{D}}-53.8(c 0.9, \mathrm{MeOD})$; ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 8.05(\mathrm{~b}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.34-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H})$, $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.69(\mathrm{~m}$, $2 \mathrm{H}), 3.25-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.03$ $(\mathrm{m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $1.48-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.94(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.6,172.7,172.2,156.7$, 138.7, 138.5, 129.2, 128.5, 128.4, 127.1, 127.0, 126.9, 79.9, 76.6, $68.9,59.5,53.9,52.6,39.2,38.5,36.1,36.0,35.6,33.3,32.5,31.5$, 31.0, 27.7, 20.1, 18.9, 18.2, 17.3, 13.1; MS (FAB) m/z $801(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right), 729,530,266,173$; HRMS calcd for $\mathrm{C}_{41} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}(\mathrm{M}+$ H^{+}) 802.4247, found 802.4245.
(3S,6S,9S,1'S,3'R,1'S)-\{3-[3-(1-Butylcarbamoyl-2-methyl-pro-pylcarbamoyl)-1-hydroxy-butyl]-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en-9-yl\}-carbamic Acid tert-Butyl Ester (41). Compound 41 ($5.5 \mathrm{mg}, 24 \%$) was prepared from 40 $(28 \mathrm{mg}, 0.035 \mathrm{mmol})$ and cis-1,4-dibromo-2-butene ($15 \mathrm{mg}, 0.07$ mmol) according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-22(c 0.1, \mathrm{MeOD}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.65$ $(\mathrm{m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.05(\mathrm{~m}, 6 \mathrm{H})$, 2.92-2.79 (m, 2H), $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12$ $(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.94(\mathrm{~m}, 9 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 674\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$674.3616, found 674.3612; LC/MS retention time [A] 6.06 min , [B] 7.89 min .
(3S,6S,9S,1'S,3'R,1'S)-\{3-[3-(1-Butylcarbamoyl-2-methyl-pro-pylcarbamoyl)-1-hydroxy-butyl]-6-methyl-5,8-dioxo-1,11-dithia-4,7-diaza-cyclopentadec-13-en-9-yl\}-carbamic Acid tert-Butyl Ester (42). Compound $42(3 \mathrm{mg}, 22 \%)$ was prepared from 40 (17 $\mathrm{mg}, 0.02 \mathrm{mmol}$) and trans-1,4-dibromo-2-butene ($14 \mathrm{mg}, 0.06$ mmol) according to the general procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}-35.2(c 0.11, \mathrm{MeOD})$; ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta$ $8.04(\mathrm{bs}, 1 \mathrm{H}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.59(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~m}$, $1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.24-$ $3.03(\mathrm{~m}, 4 \mathrm{H}), 2.95-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H})$, $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.94(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(MeOD}$, $100 \mathrm{MHz})$; MS (FAB) $m / z 675\left(\mathrm{M}+\mathrm{H}^{+}\right), 613,460,307$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 674.3616$, found 674.3616; LC/ MS retention time [A] $5.97 \mathrm{~min},[\mathrm{~B}] 7.97 \mathrm{~min}$.

5,6-Dihydro-4H-pyridine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-(2-Trimethylsilanyl-ethyl) Ester (45). Into a solution of $44(1.23 \mathrm{~g}, 5.4 \mathrm{mmol})$ in THF (27 mL) was added $\mathrm{PPh}_{3}(3.4 \mathrm{~g}$, $13.4 \mathrm{mmol})$ and trimethylsilyl ethanol $(1.2 \mathrm{~mL}, 8.1 \mathrm{mmol})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and diethylazodicarboxylate (DEAD) $(1.9 \mathrm{~mL}, 12.0 \mathrm{mmol})$ was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 2 h until the reaction was complete. The solution was partitioned between $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (hexane/AcOEt 8/1) of the residue gave 45 (1.26 $\mathrm{g}, 72 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.98(\mathrm{t}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz})$, $4.26(\mathrm{t}, 2 \mathrm{H}, J=8.64 \mathrm{~Hz}), 3.59(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.22(\mathrm{~m}, 2 \mathrm{H})$, $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 0.06(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.8,153.5,133.7,121.9,81.7$, 63.6, 43.5, 28.5, 23.4, 23.1, 17.7, -1.1; MS (ESI) m/z 328 (M + H^{+}); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 328.1939$, found 328.1928.

3-Benzylsulfanyl-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-(2-Trimethylsilanyl-ethyl) Ester (46). Into a solution of $45(1.0 \mathrm{~g}, 3.05 \mathrm{mmol})$ in $\mathrm{MeOH}(22 \mathrm{~mL})$ was added benzyl mercaptan $(1.36 \mathrm{~mL}, 10.7 \mathrm{mmol})$; then a freshly prepared solution of NaOMe in $\mathrm{MeOH}(0.5 \mathrm{M}, 18 \mathrm{~mL})$ was added dropwise at room temperature. The mixture was stirred at room temperature for 7 h until the reaction was complete; then Amberlite IR 120(+) was added to pH 7 , the resin was filtered and washed with MeOH , and the filtrate was concentrated. Flash chromatography (hexane/AcOEt 8/1) of the residue gave $46(1.08 \mathrm{~g}, 78 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\left.\mathrm{MHz}, 55^{\circ} \mathrm{C}\right) \delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{~b}, 1 \mathrm{H}), 4.26-4.18(\mathrm{~m}$, $2 \mathrm{H}), 4.04,3.94(\mathrm{~b}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.16,2.95(\mathrm{~b}, 1 \mathrm{H}), 1.92-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.48,1.46$ $(\mathrm{s}, 9 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.06,0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.100 \mathrm{MHz}, 55^{\circ} \mathrm{C}\right) \delta 170.3,156.4,137.9,137.8,128.7,128.6,128.3$, $126.9,80.1,79.9,63.4,62.8,41.8,36.1,35.7,28.2,28.1,26.4,26.2$, $19.8,17.5,17.4,-1.7 ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} .474\left(\mathrm{M}+\mathrm{Na}^{+}\right), 352(\mathrm{M}-$ Boc $)^{+}$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{SSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 452.2285$, found 452.2295.
cis-3-Benzylsulfanyl-piperidine-2-carboxylic Acid 2-Trimethyl-silanyl-ethyl Ester (47). Into a solution of 46 ($0.36 \mathrm{~g}, 0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was added TFA $(3 \mathrm{~mL})$. The mixture was stirred at room temperature for 40 min . The solvent and excess TFA were removed under reduced pressure. The residue was treated with AcOEt (20 mL), washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/ AcOEt 2/1) of the residue gave the desired cis product $47(0.11 \mathrm{~g}$, 39%) and the trans isomer $(0.10 \mathrm{~g}, 36 \%)$, which was discarded: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}$, $J=11.1,6.8 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=11.0,6.6 \mathrm{~Hz}), 3.72(\mathrm{ab}, 2 \mathrm{H}$, $J=13.3 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}$, $1 \mathrm{H}), 1.85(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.0(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.6,139.2,129.3,128.6,127.3,63.6$, 63.3, 46.1, 44.8, 37.1, 31.4, 22.1, 17.8, -1.1; MS (ESI) m/z 352 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-Benzylsulfanyl-piperidine-1,2-dicarboxylic Acid 1-tertButyl Ester 2-(2-Trimethylsilanyl-ethyl) Ester (48). Into a solution of $47(80 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(46 \mathrm{mg}, 0.53 \mathrm{mmol})$ and $(\mathrm{Boc})_{2} \mathrm{O}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$. The mixture was stirred in an ultrasonic bath for 3 h . After cooling, the excess NaHCO_{3} was filtered off, and the filtrate was evaporated. The residue was treated with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and filtered again, the filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 8/1) to give 48 (90 mg, 90\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.09,4.84(\mathrm{~b}, 1 \mathrm{H})$, $4.24(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.78(\mathrm{~m}, 31 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~m}$, $2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.6,156.4$, 138.2, 129.1, 128.9, 127.0, 80.1, 63.4, 57.6, 41.7, 40.5, 36.1, 28.2, 27.0, 26.5, 19.8, -1.7; MS (ESI) $m / z 452\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{SSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 452.2285$, found 452.2295 .
cis-3-Benzylsulfanyl-piperidine-1,2-dicarboxylic acid 1-tertbutyl ester (49). Into a suspension of 48 ($105 \mathrm{mg}, 0.23 \mathrm{mmol}$)
and molecular sieves $4 \AA$ in THF (1.9 mL) was added tetrabutyl ammonium fluoride (TBAF; 1 N in THF, 0.5 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 5 h ; then 10% citric acid was added to pH 3.0 , and the mixture was extracted with AcOEt $(3 \times 20 \mathrm{~mL})$. The combined organic layers were sequentially washed with 10% citric acid, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the acid 49 (80 mg , quant): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.2(\mathrm{~b}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H})$, $5.15,4.87(\mathrm{~b}, 1 \mathrm{H}), 3.96(\mathrm{~b}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (b, 1H), $1.74(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 174.6,156.5,138.1,129.3,128.9,127.6,81.1,59.2,41.6,36.3$, 28.7, 27.0, 25.5, 24.4, 20.3; MS (ESI) $m / z 352\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

3-Benzylsulfanyl-2-[1-(1-benzylsulfanylmethyl-4-butylcar-bamoyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-piperidine-1-carboxylic Acid tert-Butyl Ester (50). Into a solution of 49 (90 $\mathrm{mg}, 0.26 \mathrm{mmol}$) and 5-(2-amino-propionylamino)-6-benzylsulfanyl-4-hydroxy-2-methyl-hexanoic acid butylamide (prepared separately, $0.13 \mathrm{~g}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added PyBOP (0.2 g , $0.38 \mathrm{mmol})$ and DIEA $(96 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 4 h , and then 10% citric acid (2 mL) was added. The mixture was extracted with AcOEt $(3 \times 30 \mathrm{~mL})$. The combined organic layers were sequentially washed with saturated NaHCO_{3}, then with brine, dried over $\mathrm{Na}_{2}{ }^{-}$ SO_{4}, and concentrated to give a mixture of two diastereoisomers 50 (120 mg, 62\%), which were inseparable; ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 $\mathrm{MHz}) \delta 7.76(\mathrm{~b}, 1 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.40(\mathrm{~b}, 1 \mathrm{H}), 3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.83(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~m}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{HZ}), 0.93(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.7,172.1$, $155.3,138.8,129.1,129.0,128.7,128.5,127.4,127.3,126.9,126.4$, $81.2,68.9,68.8,64.5,60.6,53.3,53.2,52.9,49.6,42.9,39.1,38.2$, $37.8,37.7,35.8,32.7,31.7,31.7,27.7,20.1,19.9,17.7,13.5,13.2$; MS (ESI) $m / z 765\left(\mathrm{M}+\mathrm{Na}^{+}\right), 643(\mathrm{M}-\mathrm{Boc})^{+}$. HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 743.3871$, found 743.3870 .
(11S,15R,17R,17aR,1'R,3'S)-12-(3-Butylcarbamoyl-1-hydroxy-butyl)-15-methyl-14,17-dioxo-2,3,4,4a,6,9,11,12,13,14,15,16,17,-17a-tetradecahydro-5,10-dithia-1,13,16-triaza-benzocyclopen-tadecene-1-carboxylic Acid tert-Butyl Ester (51) and (11S,15R,$17 S, 17 \mathrm{aS}, 1^{\prime} R, 3^{\prime} S$)-12-(3-Butylcarbamoyl-1-hydroxy-butyl)-15-methyl-14,17-dioxo-2,3,4,4a,6,9,11,12,13,14,15,16,17,17a-tetra-decahydro-5,10-dithia-1,13,16-triaza-benzocyclopentadecene-1carboxylic Acid tert-Butyl Ester (53). Into a solution of dry liquid ammonia (300 mL) was added $50(36 \mathrm{mg}, 0.048 \mathrm{mmol})$; then sodium was added portionwise until a blue color persisted for more than 15 min. trans-1,4-Dibromo-2-butene was added. The mixture was allowed to reflux for 2 h , and then ammonia was removed with a stream of argon. The residue was dissolved in AcOEt, sequentially washed with 10% citric acid, then with brine, dried over NaSO_{4}, and concentrated. Flash chromatography $(4 \% \mathrm{MeOH}$ in AcOEt) of the residue gave a mixture of $\mathbf{5 1}$ and $\mathbf{5 3}$, which were separated by preparative HPLC to give $\mathbf{5 1}(8 \mathrm{mg}, 27 \%)$ and $\mathbf{5 3}$ (8 $\mathrm{mg}, 27 \%)$. For 51: $[\alpha]_{\mathrm{D}}+112(c 0.8, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz})$, $4.58(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.61$ (dt, $1 \mathrm{H}, J=9.7,3.2 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=14.7,5.7 \mathrm{~Hz}), 3.36(\mathrm{~m}$, $1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=13.6,7.8 \mathrm{~Hz}), 3.19(\mathrm{t}, 2 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=13.5,7.9 \mathrm{~Hz}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.91$ $(\mathrm{dd}, 1 \mathrm{H}, J=14.2,6.1 \mathrm{~Hz}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, 1 \mathrm{H}, J=14.2$, $7.9 \mathrm{~Hz}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}$, $9 \mathrm{H}), 1.41(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{HZ}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ $177.9,173.5,169.9,156.0,131.0,128.8,80.9,69.5,53.5,49.7$, 49.1, 45.9, 39.1, 38.8, 37.7, 33.9, 32.8, 32.7, 31.6, 27.7, 27.0, 24.2, 20.1, 18.0, 16.6, 13.1; MS (ESI) $m / z 637\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 615.3244$, found 615.3241; LC/MS retention time [A] $23.52 \mathrm{~min},[\mathrm{~B}] 8.38 \mathrm{~min}$. For 53: $[\alpha]_{\mathrm{D}}-90.5(c$ $0.4, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.6$ (m, 2H), 4.33 (m, $2 \mathrm{H}), 4.22(\mathrm{~b}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.49$ $(\mathrm{m}, 3 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 2.92$ $(\mathrm{m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 3 \mathrm{H})$,
$1.56(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{HZ}), 1.38(\mathrm{~m}$, $4 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,173.4,171.1,155.7,129.6,129.2,81.0$, $54.2,49.7,48.8,43.5,40.6,39.1,38.0,37.5,33.7,32.8,32.4,31.6$, 28.9, 27.7, 26.1, 20.1, 18.0, 16.8, 13.2; MS (ESI) m/z 637 (M + Na^{+}); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 615.3245$, found 615.3256; LC/MS retention time [A] 23.77 min , [B] 31.36 min .
(2S,4R,11'S,15'R,17'R,17a'R)-N-Butyl-4-hydroxy-2-methyl-4-(15-methyl-14,17-dioxo-2,3,4,4a,6,9,11,12,13,14,15,16,17,17a-tet-radecahydro- 1 H -5,10-dithia-1,13,16-triaza-benzocyclopentadecen-12-yl)-butyramide (52). Into a solution of 51 ($6 \mathrm{mg}, 0.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$ dropwise. The mixture was stirred at room temperature for 40 min and then evaporated. The residue was dissolved in $\mathrm{AcOEt}(10 \mathrm{~mL})$, washed sequentially with saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and then with brine, dried over NaSO_{4}, and concentrated to give $52\left(5 \mathrm{mg}\right.$, quant): $[\alpha]_{\mathrm{D}}+21(c$ $0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.63$ (ddd, $1 \mathrm{H}, J=$ $14.5,8.9,5.4 \mathrm{~Hz}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.78$ $(\mathrm{dt}, 1 \mathrm{H}, J=9.7,3.1 \mathrm{~Hz}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}$, $2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=14.2,7.9 \mathrm{~Hz}), 2.71(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, 1 \mathrm{H}, J=14.1,3.4 \mathrm{~Hz}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.71(\mathrm{ddd}, 1 \mathrm{H}, J=13.6,9.8,3.4 \mathrm{~Hz}), 1.52(\mathrm{~m}, 3 \mathrm{H}), 1.41$ $(\mathrm{d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.32(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96$ $(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{MeOD}, 100 \mathrm{MHz}) \delta 177.9,174.0$, $172.4,131.5,126.8,68.0,64.0,55.8,49.9,48.8,46.1,45.3,39.1$, $39.0,37.8,33.4,31.7,30.9,30.6,20.9,20.1,17.9,16.5,13.1$; MS (ESI) $m / z 515\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+$ H^{+}) 515.2720, found 515.2723; LC/MS retention time [A] 11.33 min, [B] 22.16 min .
(2S,4R,11'S,15'R,17'S,17a'S,)-N-Butyl-4-hydroxy-2-methyl-4-(15-methyl-14,17-dioxo-2,3,4,4a,6,9,11,12,13,14,15,16,17,17a-tet-radecahydro- 1 H -5,10-dithia-1,13,16-triaza-benzocyclopentadecen-12-yl)-butyramide (54). Compound $54(5.6 \mathrm{mg}$, quant) was prepared from $53(7 \mathrm{mg}, 0.011 \mathrm{mmol})$ according to the procedure for the preparation of 52: $[\alpha]_{\mathrm{D}}-102(c 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(\mathrm{MeOD}, 400 \mathrm{MHz}) \delta 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{q}, 1 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{td}, 1 \mathrm{H}$, $J=13.0,4.0 \mathrm{~Hz}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=$ $14.3,3.6 \mathrm{~Hz}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, 1 \mathrm{H}, J=$ $13.5,9.2,3.8 \mathrm{~Hz}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.15(\mathrm{~d}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 $\mathrm{MHz}) \delta 177.9,173.5,171.2,132.6,126.1,67.7,61.5,53.1,48.6$, $45.5,44.8,39.1,38.6,37.8,32.6,31.7,31.3,29.7,29.0,20.1,19.8$, 17.73, 17.4, 13.2; MS (ESI) $m / z 515\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$515.2720, found 515.2723; LC/MS retention time [A] 11.88 min , [B] 22.65 min .

4-Trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1carboxylic Acid tert-Butyl Ester (56). Into a solution of diisopropylamine $(0.78 \mathrm{~mL}, 5.6 \mathrm{mmol})$ in $\mathrm{THF}(15 \mathrm{~mL})$ was added n-BuLi (1.6 M in hexane, $3.5 \mathrm{~mL}, 5.4 \mathrm{mmol}$) at $-10{ }^{\circ} \mathrm{C}$. The mixture was stirred at -10 to $0^{\circ} \mathrm{C}$ for 30 min to get a LDA solution, which was added dropwise to a solution of N -Boc-4-oxo-piperidine $55(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After the mixture was stirred for $2 \mathrm{~h}, N$-(5-chloro-2-pyridyl)triflimide ($2.17 \mathrm{~g}, 5.1$ mmol) in THF (5 mL) was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 12 h , then warmed to room temperature and concentrated. Flash chromatography (hexane/AcOEt 2/1) of the residue gave $56(1.2 \mathrm{~g}, 81 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.75$ $(\mathrm{b}, 1 \mathrm{H}), 4.03(\mathrm{~b}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~b}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.7,149.8,139.8,80.9,60.7,41.8$, 28.7, 28.5, 21.4.

3,6-Dihydro-2H-pyridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Methyl Ester (57). Into a solution of 56 (0.26 g, 0.78 $\mathrm{mmol})$ in $\mathrm{DMF}(3.2 \mathrm{~mL})$ and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ were added palladium acetate ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$), triphenylphosphine (13 mg , $0.06 \mathrm{mmol})$, and triethylamine $(0.22 \mathrm{~mL}, 1.56 \mathrm{mmol})$. The mixture was purged with CO for 5 min and then stirred under CO atmosphere (with a balloon) at room temperature for 12 h . Ether $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added; the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ until neutral, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt 5/1) of the residue gave 57 (146
$\mathrm{mg}, 77 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.82(\mathrm{~b}, 1 \mathrm{H}), 4.01$ (b, $2 \mathrm{H}), 3.45(\mathrm{t}, 2 \mathrm{H}, J=5.55 \mathrm{~Hz}), 2.33(\mathrm{~b}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 164.5,154.6,134.5,131.1,80.652 .1$, 43.8, 40.5, 28.7, 24.6.
cis-3-Benzylsulfanyl-piperidine-1,4-dicarboxylic Acid 1-tertButyl Ester 4-Methyl Ester (58). Into a solution of 57 (96 mg, $0.37 \mathrm{mmol})$ in $\mathrm{MeOH}(2.8 \mathrm{~mL})$ was added benzyl mercaptan (0.14 $\mathrm{mL}, 1.1 \mathrm{mmol})$. A solution of NaOMe in $\mathrm{MeOH}(0.5 \mathrm{M}, 2.0 \mathrm{~mL})$ was added dropwise. The mixture was stirred at room temperature for 2 h until the reaction was complete, then Amberlite IR 120(+) was added to pH 7 , the resin was filtered and washed with MeOH , and the filtrate was concentrated. Flash chromatography (hexane/ $\mathrm{AcOEt} 5 / 1)$ of the residue gave $58(0.12 \mathrm{~g}, 89 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{ab}, 2 \mathrm{H}, J=$ $13.5 \mathrm{~Hz}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=13.6,2.55 \mathrm{~Hz}), 3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.85(\mathrm{td}, 1 \mathrm{H}, J=13.4,3.0 \mathrm{~Hz}), 2.72(\mathrm{dt}, 1 \mathrm{H}, J=10.6,4.1$ $\mathrm{Hz}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 172.8,155.4,138.3,129.4,128.8,127.5,80.1,52.2$, 47.4, 45.7, 43.0, 42.7, 36.3, 28.9, 24.5; MS (FAB) m/z $365(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 365.1647$, found 365.1645.
(3S,4R)-3-Benzylsulfanyl-piperidine-1,4-dicarboxylic Acid 1-tertButyl Ester 4-Methyl Ester (59) and (3R,4S)-3-Benzylsulfanyl-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester (60). Compound $58(72 \mathrm{mg}, 0.4 \mathrm{mmol})$ was dissolved in acetone $(0.2 \mathrm{~mL})$, and then phosphate buffer $(\mathrm{pH} 7.2,4.0 \mathrm{~mL})$ was added. To this solution were added pig liver esterase (14 mg) and 0.1 N NaOH to pH 8 . The mixture was stirred at room temperature for 4 days with occasionally addition of 0.1 N NaOH to maintain $\mathrm{pH} 8 . \mathrm{HCl}(1 \mathrm{~N})$ was added to pH 2 , the mixture was extracted with AcOEt $(3 \times 20$ mL), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt 5/1, pure AcOEt) of the residue gave 59 (35 mg , 49%) and $60(32 \mathrm{mg}, 49 \%)$. For 59: $[\alpha]_{\mathrm{D}}-92.2$ (c 1.8, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H})$, $3.74(\mathrm{ab}, 2 \mathrm{H}, J=13.5 \mathrm{~Hz}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=13.6$, $2.55 \mathrm{~Hz}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{td}, 1 \mathrm{H}, J=13.4,3.0 \mathrm{~Hz}), 2.72(\mathrm{dt}$, $1 \mathrm{H}, J=10.6,4.1 \mathrm{~Hz}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.8,155.4,138.3,129.4,128.8$, $127.5,80.1,52.2,47.4,45.7,43.0,42.7,36.3,28.9,24.5 ; \mathrm{MS}$ (FAB) $m / z 365\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 365.1647, found 365.1645. For 60: $[\alpha]_{\mathrm{D}}+65.4\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.81$ $(\mathrm{ab}, 2 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{bs}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H})$, $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.5$, 156.4, 138.2, 129.4, 128.9, 127.5, 80.3, 47.6, 45.7, 43.1, 42.9, 36.8, 28.8, 24.3; MS (FAB) $m / z 352\left(\mathrm{M}+\mathrm{H}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2975,1736$, 1695, 1427, 1163.
(3S,4R, $\left.1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S\right)$-3-Benzylsulfanyl-4-[1-(1-benzylsul-fanylmethyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-piperidine-1-carboxylic Acid tert-Butyl Ester (61). Into a solution of $60(22 \mathrm{mg}, 0.063 \mathrm{mmol})$ and 5-(2-amino-propionylamino)-6-benzylsulfanyl-4-hydroxy-2-methyl-hexanoic acid butylamide (prepared separately, $26 \mathrm{mg}, 0.063 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.5 \mathrm{~mL})$ were added PyBOP ($49 \mathrm{mg}, 0.095 \mathrm{mmol}$) and DIEA (24 $\mu \mathrm{L}, 0.13 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 4 h , and then 10% citric acid (1 mL) was added. The mixture was extracted with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were sequentially washed with saturated NaHCO_{3}, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a mixture of two diastereoisomers, which were separated by flash chromatography ($4 \% \mathrm{MeOH}$ in AcOEt), giving 61 (32 mg , $68 \%):[\alpha]_{\mathrm{D}}-7.5(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta$ $7.36-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 3 \mathrm{H})$, $3.69(\mathrm{ab}, 2 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~m}$, $1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, 1 \mathrm{H}, J=13.6,7.0 \mathrm{~Hz}), 2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.47(\mathrm{dd}, 1 \mathrm{H}, J=13.6,7.6 \mathrm{~Hz}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{HZ}), 1.32(\mathrm{~m}, 4 \mathrm{H})$, $1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $(\mathrm{MeOD}, 100 \mathrm{MHz}) \delta 177.4,173.4,1732.3,155.2,138.3,128.8$, $128.1,127.9,126.7,126.4,79.7,68.3,62.5,60.0,52.6,49.3,38.6$,
$37.7,37.2,36.8,35.3,32.2,31.2,27.2,24.0,19.6,17.1,16.9,12.9$, 12.7; MS (FAB) m/z $743\left(\mathrm{M}+\mathrm{H}^{+}\right), 643,154$; HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 743.3876$, found 743.3872.
(4R,7R,10S,18S, $1^{\prime} R, 3^{\prime} S$)-10-(3-Butylcarbamoyl-1-hydroxy-bu-tyl)-7-methyl-5,8-dioxo-1,3,4,4a,5,6,7,8,9,10,11,13,16,17a-tet-radecahydro-12,17-dithia-2,6,9-triaza-benzocyclopentadecene-2-carboxylic Acid tert-Butyl Ester (62). Compound 62 (9 mg, 39%) was prepared from $61(28 \mathrm{mg}, 0.038 \mathrm{mmol})$ and trans-1,4-dibromo-2-butene ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) according to the procedure for the preparation of 23: $[\alpha]_{\mathrm{D}}+133.3(c 0.45, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(\mathrm{MeOD}, 400 \mathrm{MHz}) \delta 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~m}, 5 \mathrm{H}), 2.92(\mathrm{~m}$, $3 \mathrm{H}), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=14.4,10.2 \mathrm{~Hz}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, 1 \mathrm{H}$, $J=14.4,3.2 \mathrm{~Hz}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37$ $(\mathrm{m}, 2 \mathrm{H}), 1.348(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94$ $(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0,176.4$, 173.7, 156.0, 132.7, 126.0, 80.0, 67.4, 53.0, 47.1, 45.9, 42.4, 39.2, 39.1, 38.7, 37.9, 32.4, 31.7, 31.2, 29.3, 27.7, 22.4, 20.1, 17.7, 17.4, 13.5, 13.1; MS (FAB) m/z $615\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 515, 442, 307; IR $\left(\mathrm{CHCl}_{3}\right) 3299,1734,1634,1536$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ $\left(M+\mathrm{H}^{+}\right) 615.3250$, found 615.3227 ; LC/MS retention time [A] 22.77 min .
($2 S, 4 R, 4^{\prime} R, 7^{\prime} R, 10^{\prime} S, 18^{\prime} S$)- N-Butyl-4-hydroxy-2-methyl-4-(7-methyl-5,8-dioxo-1,3,4,4a,5,6,7,8,9,10,11,13,16,17a-tetradecahy-dro-2H-12,17-dithia-2,6,9-triaza-benzocyclopentadecen-10-yl)butyramide (63). Compound 63 (6.6 mg , quant) was prepared from $62(8 \mathrm{mg}, 0.013 \mathrm{mmol})$ according to the procedure for the preparation of 52: $[\alpha]_{\mathrm{D}}+190(c 0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{dd}$, $1 \mathrm{H}, J=14.2,7.2 \mathrm{~Hz}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.23-3.08(\mathrm{~m}, 6 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=13.7,10.3 \mathrm{~Hz}), 2.86(\mathrm{dt}$, $1 \mathrm{H}, J=12.8,3.4 \mathrm{~Hz}), 2.77(\mathrm{td}, 1 \mathrm{H}, J=12.9,3.4 \mathrm{~Hz}), 2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, 1 \mathrm{H}, J=13.6,3.8 \mathrm{~Hz}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,174.0,173.5,130.4,128.0,67.8$, 55.7, 50.4, 49.2, 46.8, 44.4, 43.5, 39.1, 39.0, 37.8, 33.5, 32.2, 31.7, 30.9, 22.6, 20.1, 18.0, 15.8, 13.1; MS (ESI) m/z $515\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 515.2726$, found 515.2743 ; LC/MS retention time [A] 12.65 min , [B] 20.72 min . 3,6-Dihydro-2H-pyridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (64). 1-Benzyl-3-oxo-piperidine-4-carboxylic acid ethyl ester hydrochloric salt $(3.0 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in an aqueous solution of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1 / 1,20 \mathrm{~mL}) . \mathrm{Pd} / \mathrm{C}(10 \%$, 0.5 g) was added, and the mixture was charged with H_{2} to 50 psi , stirred for 20 h , then filtered through a pad of Celite, and washed with EtOH . The filtrate was concentrated under reduced pressure to give a pale yellowish solid, which was dissolved in CHCl_{3} (15 $\mathrm{mL})$. A solution of $\mathrm{NaHCO}_{3}(0.84 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ was added, followed by $\mathrm{NaCl}(1.71 \mathrm{~g})$. The mixture was heated to $70^{\circ} \mathrm{C}$, and a solution of $(\mathrm{Boc})_{2} \mathrm{O}$ in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was added slowly by a syringe pump during a period of 3 h . The stirring was continued for 8 h at $70^{\circ} \mathrm{C}$, then 2 h at room temperature. The organic layer was separated, and the aqueous layer was extracted twice with CHCl_{3}. The combined organic layers were dried over MgSO_{4} and concentrated. Flash chromatography (hexane/AcOEt 5/1) of the residue gave 3-oxo-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester ($2.2 \mathrm{~g}, 81 \%$). Into a solution of the former ester $(0.27 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL}), \mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added portionwise. The mixture was stirred at room temperature for 3 h , and the solvent was removed. The residue was diluted with AcOEt, washed sequentially with 1 N HCl , then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/ AcOEt 2/1) of the residue gave 3-hydroxy-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester as a mixture of cis and trans isomers with a ratio of $4 / 1(0.26 \mathrm{~g}, 96 \%)$. Into this mixture $(0.16 \mathrm{~g}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added ADDP $(0.3 \mathrm{~g}, 0.9$ mmol) and imidazole ($84 \mathrm{mg}, 0.9 \mathrm{mmol}$). $\mathrm{PMe}_{3}(1 \mathrm{M}$ in toluene, 1.2 mL) was then added dropwise. The mixture was stirred at room temperature for 1 day, and hexane (9 mL) was added. The solid was filtered off, and the residue was washed once with hexane.

The filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt $5 / 1,2 / 1$) to give $64(0.12 \mathrm{~g}$, $80 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, 2 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 4.06(\mathrm{~d}, 2 \mathrm{H}, J=2.8 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.39$ (bs, 2H), $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 166.74,155.1,135.5,129.6,80.4,61.0,43.9,40.8$, 28.8, 24.8, 14.7; MS $\left(\mathrm{FAB}^{+}\right) m / z 255\left(\mathrm{M}+\mathrm{H}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v$ $\left(\mathrm{cm}^{-1}\right) 2973,1701,1418,1247,1168$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21^{-}}$ $\mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 255.1471$, found 255.1480 .

3,6-Dihydro-2H-pyridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-(2-Trimethylsilanyl-ethyl) Ester (65). Into a solution of $64(85 \mathrm{mg}, 0.33 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added 1 N LiOH $(0.4 \mathrm{~mL})$ at room temperature. The mixture was stirred overnight; then 1 N HCl was added to pH 2 , and the mixture was extracted with AcOEt $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give an acid $(74 \mathrm{mg}, 98 \%)$. Into a solution of this acid $(52 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added EDCI ($66 \mathrm{mg}, 0.34 \mathrm{mmol}$), trimethylsilyl ethanol ($50 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$), and 4-dimethylaminopyridine (DMAP; $42 \mathrm{mg}, 0.34 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 6 h until the reaction was complete and then filtered through a pad of Celite and washed with AcOEt, and the filtrate was concentrated. Flash chromatography (hexane/AcOEt 7/1) of the residue gave pure $\mathbf{6 5}(55 \mathrm{mg}, 74 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.86(\mathrm{bs}, 1 \mathrm{H}), 4.24(\mathrm{t}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 0.05(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.8,155.1,135.3,129.8$, 80.4, 63.3, 44.0, 39.7, 28.8, 24.8, 17.7, -1.0; MS (FAB) m/z 328 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$328.1944, found 328.1939.
cis-3-Benzylsulfanyl-piperidine-1,4-dicarboxylic Acid 1-tertButyl Ester 4-(2-Trimethylsilanyl-ethyl) Ester (66). Into a solution of $\mathbf{6 5}(140 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added benzyl mercaptan $(0.17 \mathrm{~mL}, 1.72 \mathrm{mmol})$, followed by a solution of NaOMe in $\mathrm{MeOH}(0.5 \mathrm{M}, 2.15 \mathrm{~mL})$ added dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 2 h until the reaction was complete; then Amberlite IR $120(+)$ was added to pH 7 , and the mixture was filtered and washed with MeOH . The filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 5/1) to give 66 (0.16 g , $82 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.21-$ $4.02(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{ab}, 2 \mathrm{H}, J=13.46 \mathrm{~Hz}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=13.6$, $2.65 \mathrm{~Hz}), 3.08(\mathrm{bs}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, 2 \mathrm{H}, J$ $=8.6 \mathrm{~Hz}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.6$, 155.4, 138.4, 129.4, 128.9, 127.5, 80.1, 63.4, 45.8, 43.0, 36.3, 28.9, 24.5, 17.7, -1.0; MS (FAB) m/z $452\left(\mathrm{M}+\mathrm{H}^{+}\right), 396,368,324$, 278; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$452.2290, found 452.2268.
($3 R, 4 S, 1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S$)-3-Benzylsulfanyl-4-[1-(1-benzylsul-fanylmethyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-piperidine-1-carboxylic Acid tert-Butyl Ester (67). Into a solution of $66(30 \mathrm{mg}, 0.066 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL})$ were added TBAF (1 N in THF, 0.1 mL) and molecular sieves 4 \AA at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 3 h , then 10% citric acid was added to pH 3.0 , and the mixture was extracted with AcOEt $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed sequentially with 10% citric acid, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 3-benzylsulfanyl-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester (23 mg , quant): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{ab}, 2 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{bs}, 1 \mathrm{H}), 2.80(\mathrm{~m}$, $2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 177.5, 156.4, 138.2, 129.4, 128.9, 127.5, 80.3, 47.6, 45.7, 43.1, 42.9, 36.8, 28.8, 24.3; MS $\left(\mathrm{FAB}^{+}\right) m / z 352\left(\mathrm{M}+\mathrm{H}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2975, 1736, 1695, 1427, 1163; MS (ESI) m/z. $352\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Into a solution of the above acid ($22 \mathrm{mg}, 0.063 \mathrm{mmol}$) and the amine derived from $21(26 \mathrm{mg}, 0.063 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ were added PyBOP ($49 \mathrm{mg}, 0.095 \mathrm{mmol}$) and DIEA ($24 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 4 h , and then 10% citric acid (1 mL) was added. The mixture was
extracted with AcOEt $(3 \times 10 \mathrm{~mL})$; the combined organic layers were washed sequentially with saturated NaHCO_{3}, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a mixture of two diastereoisomers, which were separated by flash chromatography ($4 \% \mathrm{MeOH}$ in AcOEt) to give 67 (16 mg, 34\%): $[\alpha]_{\mathrm{D}}-22.8$ (c $0.9, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.36-7.20(\mathrm{~m}, 10 \mathrm{H})$, $4.30(\mathrm{dd}, 1 \mathrm{H}, J=14.3,7.1 \mathrm{~Hz}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{s}, 2 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, $3.16(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.93(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dd}$, $1 \mathrm{H}, J=13.8,7.1 \mathrm{~Hz}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dd}, 1 \mathrm{H}, J=13.7,7.6$ $\mathrm{Hz}), 2.0(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~m}, 4 \mathrm{H}), 1.30$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{HZ}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0,174.2,173.7,155.8$, $138.8,138.6,129.4,129.2,128.6,128.4,127.2,126.9,80.2,71.9$, $68.7,60.5,52.6,49.7,45.9,43.7,39.2,39.0,38.3,37.7,35.7,32.6$, $31.7,27.7,24.3,20.1,19.9,17.7,17.2,13.5,13.2$; MS (FAB) m / z $743\left(\mathrm{M}+\mathrm{H}^{+}\right), 643,154 ;$ IR $\left(\mathrm{CHCl}_{3}\right)$ 2968, 1710, 1654, 14367, 942; HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 743.3876$, found 743.3872 .
(4S,7R,10S,18R, $\left.1^{\prime} R, 3^{\prime} S\right)$-10-(3-Butylcarbamoyl-1-hydroxy-bu-tyl)-7-methyl-5,8-dioxo-1,3,4,4a,5,6,7,8,9,10,11,13,16,17a-tet-radecahydro-12,17-dithia-2,6,9-triaza-benzocyclopentadecene-2-carboxylic Acid tert-Butyl Ester (68). Into a solution of dry liquid ammonia (300 mL) was added $67(36 \mathrm{mg}, 0.048 \mathrm{mmol})$; then sodium was added portionwise until a blue color persisted for 5-10 min. trans-1,4-Dibromo-2-butene ($35 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added. The mixture was allowed to reflux for 2 h , and then ammonia was removed with a stream of argon. The residue was dissolved in AcOEt, sequentially washed with 10% citric acid and with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (4\% MeOH in AcOEt$)$ of the residue gave $68(12 \mathrm{mg}, 48 \%):[\alpha]_{\mathrm{D}}-80$ (c 0.11, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.87(\mathrm{~m}, 1 \mathrm{H})$, $7.71(\mathrm{bs}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.03(\mathrm{~m}, 7 \mathrm{H}), 2.83(\mathrm{~m}$, $2 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~d}, 1 \mathrm{H}, J=8.23 \mathrm{~Hz}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $(\mathrm{m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{HZ})$, $1.33(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0,174.2,174.0,156.0,130.0$, $123.8,80.2,67.7,60.2,56.3,50.5,45.3,44.5,39.8,39.3,37.8,33.7$, 32.1, 31.7, 27.7, 22.7, 20.1, 18.1, 15.8, 13.2; MS (FAB) m/z 615 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3286,1644,1623,1542 ;$ HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$615.3250, found 615.3246; LC/MS retention time [A] 21.57 min , [B] 29.00 min .
($2 S, 4 R, 4^{\prime} S, 7^{\prime} R, 10^{\prime} S, 18^{\prime} R$)- N-Butyl-4-hydroxy-2-methyl-4-(7-methyl-5,8-dioxo-1,3,4,4a,5,6,7,8,9,10,11,13,16,17a-tetradecahy-dro-2H-12,17-dithia-2,6,9-triaza-benzocyclopentadecen-10-yl)butyramide (69). Into a solution of $68(6 \mathrm{mg}, 0.009 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.6 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and concentrated under vacuum. The residue was treated with $\mathrm{AcOEt}(10 \mathrm{~mL})$, washed with saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 69 (4.2 mg, quant): $[\alpha]_{\mathrm{D}}-58.7$ (c 0.3, MeOH); ${ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~m}, 3 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.70-$ $2.34(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 12 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ 178.6, 177.9, 168.3, 131.4, 128.9, 68.1, 67.5, 45.0, 39.2, 39.1, 31.7, 30.6, 29.4, 29.1, 23.9, 23.0, 20.1, 17.3, 13.4, 13.1; MS (ESI) m/z $515\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 515.2726, found 515.2743; LC/MS retention time [A] 12.77 min , [B] 6.08 min .
cis-Piperidine-1,2,3-tricarboxylic Acid 1-tert-Butyl Ester 2Methyl Ester (70). Furo[3,4-b]pyridine-5,7-dione (12 g, 80.4 mmol) was dissolved in boiling methanol $(60 \mathrm{~mL})$, and the mixture was refluxed for 2 h . After cooling, the solvent was removed, and the solid was recrystallized in ethyl acetate to give pyridine-2,3dicarboxylic acid 2-methyl ester ($7 \mathrm{~g}, 50 \%$). Into a flask with this ester ($3 \mathrm{~g}, 16.6 \mathrm{mmol}$) were added acetic acid $(30 \mathrm{~mL})$ and 10% $\mathrm{Pd} / \mathrm{C}(0.9 \mathrm{~g})$; then H_{2} was charged in to 50 psi , and the mixture was stirred for 16 h and then filtered through a pad of Celite. The filtrate was concentrated to dryness under reduced pressure. The
residue was dissolved in methanol (60 mL); then $\mathrm{NaHCO}_{3}(3.5 \mathrm{~g}$, $44.4 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(4 \mathrm{~g}, 18.3 \mathrm{mmol})$ were added consecutively. The mixture was placed into an ultrasonic bath for 3 h . The solid was filtered off, the filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 2/1) to give racemic $70(3.6 \mathrm{~g}, 76 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.9(\mathrm{~s}$, $1 \mathrm{H}), 5.6,5.3(\mathrm{~b}, 1 \mathrm{H}), 4.13-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 177.6, 170.7, 156.6, 80.7, 52.8, 43.4, 28.7, 24.4, 22.6; MS (ESI) $\mathrm{m} / \mathrm{z} 288\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 288.1442, found 288.1435 .
cis-3-Formyl-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (71). Into a solution of $70(1.3 \mathrm{~g}, 4.5 \mathrm{mmol})$ in toluene (25 mL) was added oxalyl chloride ($0.41 \mathrm{~mL}, 4.5 \mathrm{mmol}$), followed by DMF $(8 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then concentrated to dryness. The residue was dissolved in THF (25 mL), and sodium borohydride ($0.17 \mathrm{~g}, 4.5 \mathrm{mmol}$) was added portionwise at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred for another 30 min , water (7 mL) was added carefully, followed by AcOEt $(20 \mathrm{~mL})$. The organic phase was separated, and the aqueous layer was extracted once again with AcOEt (20 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt $1 / 2$) of the residue gave the alcohol $(0.96 \mathrm{~g}, 78 \%)$. Into a solution of this alcohol ($0.83 \mathrm{~g}, 3.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added DessMartin periodinane ($1.6 \mathrm{~g}, 3.6 \mathrm{mmol}$) portionwise at $5^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight; then saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ were added. The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography of the residue (hexane/AcOEt $1 / 1)$ gave racemic $71(0.73 \mathrm{~g}, 90 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 5.56,5.30(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, 1.45 (s, 9H), 1.44-1.28 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 199.1, 170.2, 155.2, 80.6, 55.7, 52.3, 41.9, 28.1, 23.8, 20.5; MS (ESI) $m / z 272\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 272.1493, found 272.1497.
cis-3-[2-(2-Trimethylsilanyl-ethoxycarbonyl)-ethyl]-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (72). Into a solution of $\mathbf{7 1}(1.4 \mathrm{~g}, 5.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}$ TMSE ($3.45 \mathrm{~g}, 8.2 \mathrm{mmol}$). The mixture was stirred at room temperature overnight and then concentrated. Flash chromatography of the residue (hexane/AcOEt 5/1) gave a pure ester ($2.0 \mathrm{~g}, 93 \%$). Into a flask containing this ester ($1.9 \mathrm{~g}, 4.5$ $\mathrm{mmol}), \mathrm{AcOEt}(40 \mathrm{~mL})$, and $10 \% \mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g}), \mathrm{H}_{2}$ was filled in to 50 psi ; then the suspension was stirred for 2 h and filtered through a pad of Celite. The filtrate was concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 5/1) to give racemic $72(1.84 \mathrm{~g}, 98 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.87$, $4.67(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.27(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.0(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 173.9,172.0,156.5,80.6,63.0,58.2,56.6,51.9,40.9$, 32.5, 28.8, 26.0, 25.1, 17.7, -1.0; MS (ESI) $m / z 416\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 416.2463$, found 416.2451.
cis-3-(2-Carboxy-ethyl)-piperidine-1,2-dicarboxylic Acid 1-tertButyl Ester 2-Methyl Ester (73). To a solution of 72 (1.8 g, 4.3 mmol) in THF (26 mL) containing molecular sieves was added TBAF (1 M in THF, $7 \mathrm{~mL}, 7 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for $5 \mathrm{~h}, 1 \mathrm{~N} \mathrm{HCl}$ was added to pH 2 , and the mixture was extracted with $\mathrm{AcOEt}(3 \times 30$ mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated, and the residue was purified by flash chromatography (hexane/AcOEt 1/2) to give racemic 73 (1.3 $\mathrm{g}, 93 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.6(\mathrm{~b}, 1 \mathrm{H}), 4.85,4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.61(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H})$; MS (ESI) m/z 316 (M+ H^{+}); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 316.1755$, found 316.1748 .
cis-3-(3-Oxo-propyl)-piperidine-1,2-dicarboxylic Acid 1-tertButyl Ester 2-Methyl Ester (74). Racemic 74 (0.9 g, 86\%) was prepared from $73(1.25 \mathrm{~g}, 3.9 \mathrm{mmol})$ as described for the preparation of 71: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.8(\mathrm{~s}, 1 \mathrm{H}), 4.86,4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.60(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H})$; MS (ESI) m/z $322(\mathrm{M}+$ Na^{+}); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 322.1615$, found 322.1625.
cis-3-[4-(2-Trimethylsilanyl-ethoxycarbonyl)-but-3-enyl]-pi-peridine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (75). Racemic 75 ($1.08 \mathrm{~g}, 85 \%$) was prepared from 74 (0.86 g , 2.88 mmol) according to the procedure for the preparation of $\mathbf{7 2}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.93(\mathrm{dt}, 1 \mathrm{H}, J=15.4,6.9 \mathrm{~Hz})$, $5.82(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 4.86,4.66(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 0.05$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 171.3, 166.3, 155.4, 147.9, 121.5, 79.9, 62.1, 55.9, 51.1, 41.1, 37.8, 31.1, 29.3, 28.0, 25.6, 24.7, 16.9, -1.8; MS (ESI) $m / z 442\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{39}{ }^{-}$ $\mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 442.2619$, found 442.2640 .
cis-3-(4-Carboxy-but-3-enyl)-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (76). To a solution of 75 (1.06 $\mathrm{g}, 2.4 \mathrm{mmol})$ in THF (20 mL) containing molecular sieves was added TBAF (1 M in THF, $5 \mathrm{~mL}, 5 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for $5 \mathrm{~h}, 1 \mathrm{~N} \mathrm{HCl}$ was added to pH 2 , and the mixture was extracted with AcOEt (3 $\times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography (hexane/AcOEt $1 / 2$) to give racemic 76 (0.74 $\mathrm{g}, 90 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.0(\mathrm{~b}, 1 \mathrm{H}), 7.06(\mathrm{dt}$, $1 \mathrm{H}, J=15.5,7.0 \mathrm{~Hz}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.86,4.67(\mathrm{~s}$, $1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 1.68$ $(\mathrm{m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 171.2,170.9,155.4,150.9,120.6,79.9,60.1,57.3,51.2,41.1$, 37.8, 31.0, 28.0, 25.7, 24.7, 20.7; MS (ESI) m/z 342 ($\mathrm{M}+\mathrm{H}^{+}$); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$342.1911, found 342.1923.
cis-3-(5-Hydroxy-pent-3-enyl)-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (77). Racemic 77 ($0.14 \mathrm{~g}, 60 \%$) was prepared from $76(0.245 \mathrm{~g}, 0.72 \mathrm{mmol})$ via reduction with oxalyl chloride and NaBH_{4} following the preparation of 71, but stopping at the alcohol stage: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.64$ $(\mathrm{m}, 2 \mathrm{H}), 4.86,4.61(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.30$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.4,155.3,131.8,129.4$, 79.9, 63.1, 57.5, 51.0, 41.1, 37.8, 31.7, 28.0, 25.7, 24.7; MS (ESI) $m / z 328\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-(5-Hydroxy-pent-3-enyl)-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester (78). Into a solution of $77(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (1 mL) was added $1 \mathrm{~N} \mathrm{LiOH}(0.7 \mathrm{~mL}, 0.7 \mathrm{mmol})$. The mixture was stirred at room temperature for 40 h , and then 10% citric acid was added to pH 2 . The mixture was extracted with AcOEt $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give racemic 78 (48 mg, quant); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.0(\mathrm{~b}, 2 \mathrm{H})$, $5.69(\mathrm{~m}, 2 \mathrm{H}), 4.92,4.66(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 23 \mathrm{H}), 1.68(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.1,156.5,133.1,129.9,81.0$, 64.1, 56.5, 42.1, 32.4, 30.3, 28.8, 26.2, 25.5; MS (ESI) m/z 314 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
($2 R, 3 S, 1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S$)-2-[1-(1-Benzylsulfanylmethyl-4-bu-tylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethylcarbamoyl]-3-(5-hydroxy-pent-3-enyl)-piperidine-1-carboxylic Acid tert-Butyl Ester (79) and ($2 S, 3 R, 1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S$)-2-[1-(1-Benzylsulfanyl-methyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethyl-carbamoyl]-3-(5-hydroxy-pent-3-enyl)-piperidine-1-carboxylic Acid tert-Butyl Ester (80). Into a solution of 78 ($48 \mathrm{mg}, 0.15$ mmol) and 5-(2-amino-propionylamino)-6-benzylsulfanyl-4-hy-droxy-2-methyl-hexanoic acid butylamide (prepared separately, 74 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added PyBOP (0.12 mg , 0.23 mmol) and DIEA ($58 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 4 h ; then 10% citric
acid (1 mL) was added. The mixture was extracted with AcOEt (3 $\times 20 \mathrm{~mL}$), and the combined organic layers were sequentially washed with saturated NaHCO_{3}, then with brine, dried over $\mathrm{Na}_{2}-$ SO_{4}, and concentrated to give a mixture of two diastereoisomers $79(34 \mathrm{mg}, 32 \%)$ and $\mathbf{8 0}(34 \mathrm{mg}, 32 \%)$, which were separated by flash chromatography ($4 \% \mathrm{MeOH}$ in AcOEt). For 79: $[\alpha]_{\mathrm{D}}-47.5$ (c $0.75, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36-7.23(\mathrm{~m}$, $5 \mathrm{H}), 5.66(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~b}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 2 \mathrm{H}), 4.0(\mathrm{~m}, 2 \mathrm{H}), 3.94$ $(\mathrm{m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 3 \mathrm{H})$, $2.20(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~m}$, $8 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.1,173.6,172.4,156.3,138.0,128.4$, $127.7,126.2,80.1,67.0,61.9,57.5,51.0,49.0,38.3,37.6,37.2$, $36.9,34.9,32.4,31.8,30.9,29.0,27.0,26.6,24.4,19.4,17.6,17.4$, 12.4; MS (ESI) m/z $705\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$705.4256, found 705.4253. For 80: $[\alpha]_{\mathrm{D}}-36.3(c 0.95$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.66$ $(\mathrm{m}, 2 \mathrm{H}), 4.62(\mathrm{~b}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H})$, $3.76(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.65-2.50$ $(\mathrm{m}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $1.40(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.1$, 173.4, 172.1, 156.2, 138.0, 130.8, 129.2, 128.4, 127.7, 126.2, 80.5, $67.2,61.8,59.5,52.0,38.3,37.6,37.2,36.9,34.9,31.7,30.9,29.5$, 29.0, 27.0, 26.9, 25.2, 24.6, 19.4, 16.9, 12.4; MS (ESI) m/z 705 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 705.4256$, found 705.4259.
(12S,15R,17R,17aS, $1^{\prime} R, 3^{\prime} S$)-12-(3-Butylcarbamoyl-1-hydroxy-butyl)-15-methyl-14,17-dioxo-3,4,4a,5,6,9,11,12,13,14,15,16,17,-17a-tetradecahydro-2 H -10-thia-1,13,16-triaza-benzocyclopen-tadecene-1-carboxylic Acid tert-Butyl Ester (81). Sodium was added portionwise to $79(25 \mathrm{mg}, 0.035 \mathrm{mmol})$ in liquid ammonia $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until a permanent blue coloration was established. After the mixture was stirred for another 15 min , the color was discharged by addition of the minimum quantity of solid $\mathrm{NH}_{4} \mathrm{Cl}$, and the solvent was evaporated under a stream of argon. The residue was dissolved in AcOEt (40 mL), washed sequentially with $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ and then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the free thiol (22 mg). Into a solution of this thiol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ were added 1,1'-(azodicarbonyl)dipiperidine (ADDP) ($18.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) and imidazole ($5.0 \mathrm{mg}, 0.07 \mathrm{mmol}$). Trimethylphosphine (1 M in toluene, $73 \mu \mathrm{~L}, 0.073 \mathrm{mmol}$) was then added dropwise. The mixture was stirred at room temperature for 40 h and evaporated. Flash chromatography ($4 \% \mathrm{MeOH}$ in AcOEt) of the residue gave $81(8.4 \mathrm{mg}, 42 \%):[\alpha]_{\mathrm{D}}-46.5(c 0.4, \mathrm{MeOH})$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.64-$ $4.43(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}$, $3 \mathrm{H}), 3.0(\mathrm{dd}, 1 \mathrm{H}, J=12.7,5.5 \mathrm{~Hz}), 2.60(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H})$, $1.73(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.2,173.9,173.6,157.3,137.4,126.6$, 80.2, 68.4, 59.7, 52.9, 49.0, 42.7, 39.8, 38.9, 38.7, 37.2, 32.8, 32.7, 30.9, 30.4, 28.8, 26.7, 26.0, 21.3, 18.7, 14.3; MS (ESI) m/z 597 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 597.3680$, found 597.3687; LC/MS retention time [A] 14.45 min , [B] 32.46 min.
($2 S, 4 R, 12^{\prime} S, 15^{\prime} R, 17^{\prime} R, 17 a^{\prime} S$)- N-Butyl-4-hydroxy-2-methyl-4-(15-methyl-14,17-dioxo-1,2,3,4,4a,5,6,9,11,12,13,14,15,16,17,17a-hexadecahydro-10-thia-1,13,16-triaza-benzocyclopentadecen-12$\mathbf{y l})$-butyramide (82). Into a solution of $\mathbf{8 1}(8 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 40 min . The solvent and excess TFA were removed under reduced pressure, and the residue was treated with AcOEt $(20 \mathrm{~mL})$, washed sequentially with saturated NaHCO_{3}, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 82 (6.5 mg , quant): $[\alpha]_{\mathrm{D}}+5.5$ (c 0.4, MeOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, 1 \mathrm{H}, J$ $=13.8,6.8 \mathrm{~Hz}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=3.2$ $\mathrm{Hz}), 3.19(\mathrm{~m}, 4 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18$ $(\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 3 \mathrm{H})$, $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$,
$0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.2$, $172.9,171.2,134.9,124.6,66.6,61.2,52.9,44.1,43.2,38.3,38.1$, 37.0, 34.8, 31.7, 30.9, 28.8, 28.4, 25.7, 24.8, 19.4, 18.7, 16.8, 16.3; MS (ESI) $m / z 497\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}$ $+\mathrm{H}^{+}$) 497.3156, found 497.3161; LC/MS retention time [A] 8.59 min, [B] 23.41min.
(12S,15R,17S,17aR, $1^{\prime} R, 3^{\prime} S$)-12-(3-Butylcarbamoyl-1-hydroxy-butyl)-15-methyl-14,17-dioxo-3,4,4a,5,6,9,11,12,13,14,15,16,17,-17a-tetradecahydro- 2 H -10-thia-1,13,16-triaza-benzocyclopen-tadecene-1-carboxylic Acid tert-Butyl Ester (83). Compound 83 was obtained from 80 following the procedure for the preparation of 81: $[\alpha]_{\mathrm{D}}+36(c 0.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $5.56(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~m}$, $1 \mathrm{H}), 3.25-3.01(\mathrm{~m}, 5 \mathrm{H}), 2.69(\mathrm{dd}, 1 \mathrm{H}, J=13.1,10.3 \mathrm{~Hz}), 2.58$ $(\mathrm{m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.52-$ $1.30(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.1,174.2,173.6$, $157.5,137.0,126.5,81.9,68.9,61.4,54.2,51.2,47.6,40.3,40.2$, $39.9,38.8,37.6,34.6,34.1,32.8,31.1,30.9,28.8,21.3,18.7,17.2$, 14.3; MS (ESI) $m / z 597\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 597.3680$, found 597.3679 ; LC/MS retention time [A] 13.72 min , [B] 31.69 min .
(2R,4S,12'S, $15^{\prime} R, 17^{\prime} S, 17 a^{\prime} R$)- N-Butyl-4-hydroxy-2-methyl-4-(15-methyl-14,17-dioxo-1,2,3,4,4a,5,6,9,11,12,13,14,15,16,17,17a-hexadecahydro-10-thia-1,13,16-triaza-benzocyclopentadecen-12-yl)-butyramide (84). Compound 84 was obtained from 83 following the procedure for the preparation of $\mathbf{8 2}:[\alpha]_{\mathrm{D}}+18(c 0.2, \mathrm{MeOH})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.42(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.24$ $(\mathrm{m}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H})$, $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}$, $3 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.40(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.1,176.5,174.4,137.1$, $125.9,68.3,65.2,61.2,53.9,49.9,47.3,40.2,39.9,38.9,37.2,33.8$, 32.7, 31.1, 30.7, 28.5, 27.9, 21.3, 18.7, 18.0, 14.3; MS (ESI) m / z $497\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$497.3156, found 497.3161.
(1'S)-[Pent-4-enyl-(1-phenyl-ethyl)-amino]-acetic Acid Methyl Ester (85). Pent-4-enal ($0.84 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of (S)-1-phenyl-ethylamine $(1.21 \mathrm{~g}, 10 \mathrm{mmol})$ and $4 \AA$ molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was stirred at room temperature for 3 h and then concentrated to dryness. The residue was dissolved in methanol (40 mL) and cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ ($0.49 \mathrm{~g}, 13 \mathrm{mmol}$) was added portionwise, and the suspension was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 30 min , then concentrated. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solvent was removed to give crude (S)-pent-4-enyl-(1-phenyl-ethyl)-amine, which was dissolved in DMSO (200 mL), and methyl bromoformate $(0.95 \mathrm{~mL}$, $10 \mathrm{mmol})$ and triethylamine $(1.66 \mathrm{~mL}, 12 \mathrm{mmol})$ were then added consecutively. The mixture was stirred at room temperature for 40 h, then treated with a solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}(2 /$ $1,50 \mathrm{~mL})$ and extracted with ether $(2 \times 100 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt, 8/1) of the residue gave $85(0.74 \mathrm{~g}, 80 \%):[\alpha]_{\mathrm{D}}-32.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}$, $2 \mathrm{H}), 4.05(\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{ab}, 2 \mathrm{H}, J=17.2$ $\mathrm{Hz}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta .172 .4,144.2,138.3,127.8$, $127.2,126.5,114.1,60.0,50.9,50.2,30.9,26.6$; MS (ESI) m / z $262\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$262.1802, found 262.1810 .
(2R,3S,1'S)-3-But-3-enyl-1-(1-phenyl-ethyl)-piperidine-2-carboxylic Acid Methyl Ester (86). Into a solution of $\mathbf{8 5}(0.34 \mathrm{~g}, 1.3$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added LDA (1 M in THF and hexane, 1.55 mL) at $-70^{\circ} \mathrm{C}$. The mixture was stirred at -70 to $-50{ }^{\circ} \mathrm{C}$ for 40 min ; then $\mathrm{ZnBr}_{2}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 4.6 \mathrm{~mL}\right)$ was added. The mixture was stirred at $-40^{\circ} \mathrm{C}$ to room temperature for 5 h and cooled to $-40^{\circ} \mathrm{C}$; then a suspension of $\mathrm{CuCN}(0.54 \mathrm{~g}, 6 \mathrm{mmol})$ in THF (10 mL) was added. The mixture was stirred at -40 to -5 ${ }^{\circ} \mathrm{C}$ for 1 h and cooled to $-40^{\circ} \mathrm{C}$, and then allylbromide $(0.4 \mathrm{~mL}$,
4.7 mmol) was added. The mixture was stirred at $-40^{\circ} \mathrm{C}$ to roomtemperature overnight, treated with a solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}(2 / 1,20 \mathrm{~mL})$, and extracted with $\mathrm{AcOEt}(3 \times 30 \mathrm{~mL})$. The combined organic layers were sequentially washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt, 15/1) of the residue gave $86(0.26 \mathrm{~g}, 65 \%):[\alpha]_{\mathrm{D}}-9.5\left(c 1.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 2 \mathrm{H}), 3.66$ $(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 3.10$ $(\mathrm{td}, 1 \mathrm{H}, J=11.7,3.1 \mathrm{~Hz}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{td}, 1 \mathrm{H}, J=12.8,3.9 \mathrm{~Hz}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 1.31-1.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$. 173.1, 145.0, 138.1, 127.8, 127.6, 127.4, 126.8, 126.4, 114.3, 62.4, 61.7, 49.8, 42.2, 37.8, 31.7, 30.8, 25.4, 24.9, 20.7; MS (ESI) m / z $302\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 302.2115$, found 302.2115 .
(2R,3S,1'S)-3-(3-Oxo-propyl)-1-(1-phenyl-ethyl)-piperidine-2carboxylic Acid Methyl Ester (87). Into a solution of 86 (0.11 g , $0.37 \mathrm{mmol})$ in dioxane $-\mathrm{H}_{2} \mathrm{O}(3 / 1,3.5 \mathrm{~mL})$ were added 2,6-lutidine ($87 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$), osmium tetroxide (2.5% in tert-butyl alcohol, $96 \mu \mathrm{~L})$, and sodium metaperiodate ($0.3 \mathrm{~g}, 1.36 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h ; then water (5 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt, 5/1) of the residue gave 87 (68 $\mathrm{mg}, 61 \%):[\alpha]_{\mathrm{D}}-32.1\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 9.7(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 3.65(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.63$ $(\mathrm{s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}))$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 201.8,200.7,172.7,172.6,144.8$, $144.3,127.9,127.8,126.8,126.7,126.6,126.5,62.3,62.1,61.7$, $61.4,50.2,50.0,46.7,42.0,41.2,38.1,32.7,25.6,25.3,25.2,25.0$, 24.9, 24.7, 20.6; MS (ESI) $m / z 304\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$304.1907, found 304.1918.
(2R,3S)-3-(3-Oxo-propyl)-piperidine-1,2-dicarboxylic Acid 1-tert-Butyl Ester 2-Methyl Ester (88). Into a flask were added $87(0.34 \mathrm{~g}, 1.12 \mathrm{mmol})$, methanol $(40 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(0.5 \mathrm{~g}, 2.3$ $\mathrm{mmol})$, and $10 \% \mathrm{Pd} / \mathrm{C}(0.12 \mathrm{~g})$. The mixture was stirred for 16 h under an atmosphere of H_{2} (balloon), then filtered through a pad of Celite. The filtrate was concentrated to dryness under reduced pressure, and the residue was purified by flash chromatography (hexane/AcOEt 2/1) to give $88(0.18 \mathrm{~g}, 54 \%)$: $[\alpha]_{\mathrm{D}}-10.2(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 4.86,4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.60(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 202.2,200.9,171.8,156.1,155.5,80.6,58.1,56.5,52.0$, 51.9, 41.9, 28.7, 26.7, 26.2, 25.5, 25.0; MS (ESI) m/z 300 (M+ H^{+}).
cis-3-[3-(tert-Butyl-dimethyl-silanyloxy)-propyl]-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (89). To a suspension of $\mathrm{Mg}(0.45 \mathrm{~g}, 18.5 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added dropwise 3-tert-butyldimethylsilanyloxypropyl bromide $(3.0 \mathrm{~mL}$, $13 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h to form the Grignard reagent. Into another 100 mL flask were added $\mathrm{CuI}(1.2 \mathrm{~g}, 6.5 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. The stirring solution was cooled to $-78^{\circ} \mathrm{C}$, and the previously prepared Grignard reagent was added dropwise through a cannula. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h ; then a solution of $64(0.45 \mathrm{~g}, 1.74 \mathrm{mmol})$, trimethylsilyl chloride ($\mathrm{TMSCl} ; 1.63 \mathrm{~mL}, 13.5 \mathrm{mmol}$), and hexamethylphosphoramide (HMPA) ($2.25 \mathrm{~mL}, 13.5 \mathrm{mmol}$) in THF (7 mL) was added slowly through a syringe pump over a period of 2 h . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 3 h and then gradually warmed to $-20^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}(4 / 1,30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine $(3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Flash chromatography (hexane/AcOEt 5/1) of the residue gave $89(0.4 \mathrm{~g}, 68 \%)$, and 64 $(0.14 \mathrm{~g})$ was also recovered: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H})$,
$1.97(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.2,155.4$, 80.0, 63.6, 60.6, 46.6, 44.7, 42.7, 37.1, 31.2, 28.8, 26.3, 24.3, 18.7, 14.7, -4.7; MS (ESI) m/z $430\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-(3-Hydroxy-propyl)-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (90). Into a solution of $\mathbf{8 9}(100$ $\mathrm{mg}, 0.23 \mathrm{mmol})$ in THF $(2.3 \mathrm{~mL})$ was added TBAF (1 N in THF, 0.4 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h , then saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{AcOEt}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt 1/1) of the residue gave racemic $90(65 \mathrm{mg}, 90 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 4.17(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dd}, 1 \mathrm{H}$, $J=13.3,2.4 \mathrm{~Hz}), 2.96(\mathrm{ddd}, 1 \mathrm{H}, J=13.6,10.0,4.0 \mathrm{~Hz}), 2.65(\mathrm{dt}$, $1 \mathrm{H}, J=9.9,4.5 \mathrm{~Hz}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.20(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.2,155.6,80.1,62.9,60.8$, 46.3, 45.2, 43.1, 36.8, 31.1, 28.8, 24.3, 23.4, 14.7; MS (ESI) m/z $315\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 315.2046, found 315.2047.
cis-3-(3-Oxo-propyl)-piperidine-1,4-dicarboxylic Acid 1-tertButyl Ester 4-Ethyl Ester (91). Into a solution of 90 ($54 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added Dess-Martin periodinane (0.1 $\mathrm{g}, 0.24 \mathrm{mmol}$) portionwise at $10{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight, then saturated $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ were added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt 2/1) of the residue gave racemic 91 (42 $\mathrm{mg}, 80 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (q, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.0(\mathrm{~b}, 1 \mathrm{H}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J=13.5,4.3 \mathrm{~Hz}), 3.01$ $(\mathrm{dd}, 1 \mathrm{H}, J=13.6,2.7 \mathrm{~Hz}), 2.85(\mathrm{~b}, 1 \mathrm{H}), 2.61(\mathrm{dt}, 1 \mathrm{H}, J=10.0$, $4.4 \mathrm{~Hz}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 202.1,173.8,155.4,80.1,60.9,46.3$, 45.3, 44.7, 42.3, 41.5, 36.4, 32.2, 28.8, 24.1, 19.9, 14.6; MS (ESI) $m / z 314\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-[4-(2-Trimethylsilanyl-ethoxycarbonyl)-but-3-enyl]-pi-peridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (92). Into a solution of $91(110 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{TMSE}(0.28 \mathrm{~g}, 0.7 \mathrm{mmol})$. The mixture was stirred at room temperature overnight and then concentrated. Flash chromatography (hexane/AcOEt 5/1) of the residue gave racemic 92 ($120 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.9$ $(\mathrm{dt}, 1 \mathrm{H}, J=15.6,7.2 \mathrm{~Hz}), 5.82(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.22(\mathrm{t}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, 1 \mathrm{H}$, $J=13.6,4.1 \mathrm{~Hz}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dt}, 1 \mathrm{H}, J=9.7,4.6 \mathrm{~Hz})$, $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.59(\mathrm{~m}, 3 \mathrm{H})$, $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.10(\mathrm{t}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.9$, 167.1, 156.2, 144.4, 122.4, 80.0, 62.9, 60.9, 45.0, 44.4, 36.4, 30.2, 28.8, 26.2, 25.4, 19.7, 14.7, -1.3; MS (ESI) $m / z 456\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$456.2776, found 456.2777.
cis-3-(4-Carboxy-but-3-enyl)-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (93). Into a solution of 92 (150 $\mathrm{mg}, 0.33 \mathrm{mmol})$ in THF (2.6 mL) were added TBAF (1 N in THF, 0.66 mL) and $4 \AA$ molecular sieves at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 3 h , then 10% citric acid was added to pH 3.0 , and the mixture was extracted with $\operatorname{AcOEt}(3 \times 20 \mathrm{~mL})$. The combined organic layers were sequentially washed with 10% citric acid, then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (hexane/AcOEt $1 / 1$ and $1 / 2$) of the residue gave racemic 93 ($72 \mathrm{mg}, 63 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.03(\mathrm{dt}, 1 \mathrm{H}, J=15.5,6.8 \mathrm{~Hz}), 5.84(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.15$ $(\mathrm{m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=13.6,4.3 \mathrm{~Hz}), 3.02(\mathrm{~d}$, $1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 2.90(\mathrm{~b}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$100 \mathrm{MHz}) \delta 173.9,171.8,155.2,151.2,121.6,80.2,60.9,46.3$, 44.9, 42.5, 36.3, 30.4, 28.8, 25.4, 23.8, 14.6; MS (ESI) $m / z 356$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-(5-Hydroxy-pent-3-enyl)-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (94). Into a solution of 93 (40 $\mathrm{mg}, 0.11 \mathrm{mmol})$ and triethylamine $(0.019 \mathrm{~mL}, 0.14 \mathrm{mmol})$ in THF $(3.2 \mathrm{~mL})$ was added ethyl chloroformate $(0.13 \mathrm{~mL}, 0.14 \mathrm{mmol})$ at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 20 min , and then sodium borohydride $(17.2 \mathrm{mg}, 0.44 \mathrm{mmol})$ and methanol $(0.32 \mathrm{~mL})$ were added consecutively. The mixture was stirred for 30 min at -5 ${ }^{\circ} \mathrm{C}$, and then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2}{ }^{-}$ SO_{4}, and concentrated. Flash chromatography (hexane/AcOEt 1/1) of the residue gave racemic $94(24 \mathrm{mg}, 60 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 5.62(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~m}$, $2 H), 3.05-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~b}, 1 \mathrm{H}), 2.0(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.21$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.2,155.4,132.9,130.2$, 80.0, 77.6, 64.1, 60.9, 44.9, 42.6, 36.4, 30.5, 30.1, 28.8, 14.7; MS (FAB) $m / z 342\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
cis-3-(5-Hydroxy-pent-3-enyl)-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester (95). Into a solution of $94(25 \mathrm{mg}, 0.073 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL})$ was added $1 \mathrm{~N} \mathrm{LiOH}(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ at room temperature. The mixture was stirred overnight, then 10% citric acid was added to pH 2 , and the mixture was extracted with AcOEt $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give racemic 95 (22 mg, 96\%): ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.65$ (m, 2H), $4.01(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{dd}, 1 \mathrm{H}, J=13.6,2.7 \mathrm{~Hz}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.68$ $(\mathrm{dt}, 1 \mathrm{H}, J=10.2,4.4 \mathrm{~Hz}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 176.7, 155.7, 131.5, 130.0, 80.1, 62.6, 46.2, 44.8, 43.6, 42.4, 36.3, 30.2, 27.7, 26.1; MS (ESI) $m / z 336\left(\mathrm{M}+\mathrm{Na}^{+}\right), 314\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
($3 R, 4 R, 1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S$)-4-[1-(1-Benzylsulfanylmethyl-4-bu-tylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethyl carbamoyl]-3-(5-hydroxy-pent-3-enyl)-piperidine-1-carboxylic Acid tert-Butyl Ester (96) and (3S,4S, $\left.1^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 4^{\prime \prime} S\right)$-4-[1-(1-Benzylsulfanyl-methyl-4-butylcarbamoyl-2-hydroxy-pentylcarbamoyl)-ethyl car-bamoyl]-3-(5-hydroxy-pent-3-enyl)-piperidine-1-carboxylic Acid tert-Butyl Ester (97). Into a solution of $95(25 \mathrm{mg}, 0.073 \mathrm{mmol})$ and 5-(2-amino-propionylamino)-6-benzylsulfanyl-4-hydroxy-2-methyl-hexanoic acid butylamide (prepared separately, $36 \mathrm{mg}, 0.088$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added PyBOP ($57 \mathrm{mg}, 0.11 \mathrm{mmol}$) and DIEA $(30 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature for 4 h , and then 10% citric acid (1 mL) was added. The mixture was extracted with $\operatorname{AcOEt}(3 \times 20 \mathrm{~mL})$. The combined organic layers were sequentially washed with saturated NaHCO_{3} and with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a mixture of two diastereoisomers, $96(18 \mathrm{mg}$,
 chromatography ($4 \% \mathrm{MeOH}$ in AcOEt). For 96: $[\alpha]_{\mathrm{D}}-38$ (c 0.3, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.62$ $(\mathrm{m}, 2 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 5 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $2 \mathrm{H}), 3.16(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 7 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,175.2,174.1$, $155.7,138.8,129.9,129.2,128.5,126.9,80.0,68.6,62.7,62.6$, $52.8,49.5,49.3,39.1,38.4,37.6,37.1,35.7,35.6,32.6,31.7,30.1$, 27.7, 20.1, 17.7, 17.4, 17.2, 13.2; MS (FAB) $m / z 704\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$705.4256, found 705.4265. For 97: $[\alpha]_{\mathrm{D}}-47(c 0.6, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.01-$ $3.94(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $1.39(\mathrm{~m}, 8 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9,175.0,174.3,155.7,138.8$, $130.1,129.2,128.4,126.9,80.0,68.6,62.6,52.8,52.6,49.6,49.3$, $39.1,38.3,37.6,37.1,35.7,32.7,32.6,31.7,30.0,27.7,20.1,17.7$,
17.6, 17.4, 17.2, 13.2; MS (FAB) m/z $704\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 705.4256$, found 705.4259.
(4R,7R,10S,18R,1'R,3'S)-10-(3-Butylcarbamoyl-1-hydroxy-bu-tyl)-7-methyl-5,8-dioxo-3,4,4a,5,6,7,8,9,10,11,13,16,17,17a-tet-radecahydro-1H-12-thia-2,6,9-triaza-benzocyclopentadecene-2carboxylic Acid tert-Butyl Ester (98). Na was added portionwise to $96(47 \mathrm{mg}, 0.68 \mathrm{mmol})$ in liquid ammonia $(80 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until a permanent blue coloration persisted. After the mixture was stirred for another 15 min , the color was then discharged by addition of the minimum quantity of solid $\mathrm{NH}_{4} \mathrm{Cl}$. Liquid ammonia was evaporated under a stream of argon. The residue was dissolved in AcOEt (40 mL), washed sequentially with $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ and then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a thiol $(42 \mathrm{mg})$. To a solution of this thiol $(42 \mathrm{mg}, 0.068 \mathrm{mmol})$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(12 \mathrm{~mL})$ were added $1,1^{\prime}$-(azodicarbonyl)dipiperidine (ADDP) ($33.6 \mathrm{mg}, 0.14 \mathrm{mmol}$) and imidazole $(9.0 \mathrm{mg}, 0.14 \mathrm{mmol})$. Trimethylphosphine (1 M in toluene, 0.14 mL) was then added dropwise. The mixture was stirred at room temperature for 20 h and evaporated. Flash chromatography ($10 \% \mathrm{MeOH}$ in AcOEt) of the residue gave product $98(12 \mathrm{mg}, 30 \%):[\alpha]_{\mathrm{D}}-9.1(c 0.35$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.81(\mathrm{~b}, 1 \mathrm{H}), 5.58(\mathrm{~m}$, $1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dt}, 1 \mathrm{H}, J=6.9,4.0 \mathrm{~Hz}), 4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.86(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.77(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.19(\mathrm{~m}, 3 \mathrm{H})$, $2.98(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}$, $1 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.39$ $(\mathrm{m}, 3 \mathrm{H}), 1.33(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.95$ (t, 3H, $J=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta$ 178.0, 174.1, $172.7,155.6,135.5,125.5,80.0,69.4,53.7,49.8,46.1,39.0,38.9$, $37.8,36.8,32.1,31.7,29.7,29.5,27.7,25.6,20.1,17.7,17.0,13.2$; MS (ESI) m/z $597\left(\mathrm{M}+\mathrm{H}^{+}\right), 497(\mathrm{M}-\mathrm{Boc})^{+}$. HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 597.3680$, found 597.3691 ; LC/MS retention time [A] 6.16 min , [B] 8.15 min .
($2 S, 4 R, 4^{\prime} R, 7^{\prime} R, 10^{\prime} S, 18^{\prime} R$)- N-Butyl-4-hydroxy-2-methyl-4-(7-methyl-5,8-dioxo-1,2,3,4,4a,5,6,7,8,9,10,11,13,16,17,17a-hexa-decahydro-12-thia-2,6,9-triaza-benzocyclopentadecen-10-yl)butyramide (99). Into a solution of $98(7 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 30 min . The solvent and excess TFA were removed under reduced pressure. The residue was dissolved in AcOEt (20 mL), washed sequentially with saturated NaHCO_{3} and with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 99 (6 mg, quant): $[\alpha]_{\mathrm{D}}-3.3(c 0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, $400 \mathrm{MHz}) \delta 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~b}, 1 \mathrm{~h}), 4.47(\mathrm{q}, 1 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 4.36(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~m}, 3 \mathrm{H})$, $2.98(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, 1 \mathrm{H}, J=14.2$, $4.0 \mathrm{~Hz}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 3 \mathrm{H})$, $1.40-1.24(\mathrm{~m}, 8 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0,175.2,173.7,134.8$, $125.9,67.8,53.4,45.8,42.6,42.2,39.1,38.6,37.7,35.2,32.4,31.7$, 29.7, 28.9, 26.3, 22.4, 20.1, 17.7, 17.1, 13.1; MS (ESI) m/z 497 $\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 497.3156$, found 497.3157; LC/MS retention time [A] 16.95 min , [B] 21.50 min.
(4S,7R,10S,18S, $1^{\prime} R, 3^{\prime} S$)-10-(3-Butylcarbamoyl-1-hydroxy-bu-tyl)-7-methyl-5,8-dioxo-3,4,4a,5,6,7,8,9,10,11,13,16,17,17a-tet-radecahydro-1H-12-thia-2,6,9-triaza-benzocyclopentadecene-2carboxylic Acid tert-Butyl Ester (100). Compound 100 (12 mg, 46%) was prepared from $97(27 \mathrm{mg}, 0.038 \mathrm{mmol})$ according to the procedure for the preparation of 98: $[\alpha]_{\mathrm{D}}+21(c 0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dt}$, $1 \mathrm{H}, J=7.3,6.9 \mathrm{~Hz}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H})$, $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{td}, 1 \mathrm{H}, J=6.9,2.8 \mathrm{~Hz}), 3.10(\mathrm{~d}, 1 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.16$ $(\mathrm{m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, $1.37(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.142(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, 0.95 (t, 3H, $J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 177.9$, 176.0, 174.2, 155.8, 135.3, 121.6, 80.1, 67.4, 53.8, 50.3, 45.0, 39.0, $38.8,37.8,36.6,33.1,31.7,29.8,27.7,25.7,24.5,20.1,17.7,15.5$, 13.2; MS (ESI) $m / z 619\left(\mathrm{M}+\mathrm{Na}^{+}\right), 497(\mathrm{M}-\mathrm{Boc})^{+}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 597.3680$, found 597.3678 ; LC/MS retention time [A] 22.11 min , [B] 30.18 min .
(2S,4R, $4^{\prime} S, 7^{\prime} R, 10^{\prime} S, 18^{\prime} S$)- N-Butyl-4-hydroxy-2-methyl-4-(7-methyl-5,8-dioxo-1,2,3,4,4a,5,6,7,8,9,10,11,13,16,17,17a-hexa-decahydro-12-thia-2,6,9-triaza-benzocyclopentadecen-10-yl)butyramide (101). Compound 101 (6 mg , quant) was prepared from $100(7 \mathrm{mg}, 0.012 \mathrm{mmol})$ according to the procedure described for the preparation of 99: $[\alpha]_{\mathrm{D}}+34.4(c 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(\mathrm{MeOD}, 400 \mathrm{MHz}) \delta 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~b}, 1 \mathrm{H})$, $4.35(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}$, $1 \mathrm{H}), 3.19(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.13(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.0(\mathrm{~m}$, $2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.0,3.3 \mathrm{~Hz}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}$, $4 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $0.96(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz$) \delta 178.0$, 175.1, 174.2, 134.3, 125.8, 67.0, 54.0, 50.4, 46.2, 44.9, 43.8, 39.0, $38.8,37.8,36.6,33.1,31.7,29.8,29.2,25.7,20.1,17.8,15.6,13.2$; MS (ESI) $m / z 497\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}$ $+\mathrm{H}^{+}$) 497.3156, found 497.3154; LC/MS retention time [A] 15.88 min, [B] 21.18 min .

Acknowledgment. We thank NSERC (Canada) for financial assistance, Dr. Michel Simard for X-ray analysis of compound 59, Dalbir Sekon for LC/MS analyses, and Guillaume Charron for proofreading. S.H. thanks Novartis Pharma AG, Basel/ Switzerland, for generous financial support. We also thank René Hemmig, Sylvie Lehmann, and Sebastien Rieffel for technical support. X-ray data collection for the enzyme complexes was performed at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. We are grateful to the machine and beamline groups whose outstanding efforts have made these experiments possible.

Supporting Information Available: Experimental details for enzyme inhibition measurements, modeling of compounds in BACE, and crystallization, as well as crystal structure data. This material is available free of charge via the Internet at http:// pubs.acs.org. The X-ray structures of the BACE complexes with compounds $\mathbf{4 2}$ and $\mathbf{5 2}$ have been deposited with the Protein Data Bank (PDB identifier 2F3E and 2 F 3 F , respectively).

References

(1) Thompson, L. A.; Brown, J. J.; Zusi, F. C. Progress in the discovery of BACE inhibitors. Curr. Pharm. Des. 2005, 11, 3383-3404.
(2) Tyndall, J. D. A.; Nall, T.; Fairlie, D. P. Proteases Universally Recognize Beta Strands in their Active Sites. Chem. Rev. 2005, 105, 973-1000.
(3) Tyndall, J. D. A.; Fairlie, D. P. Macrocycles Mimic the Extended Peptide Conformation Recognized by Aspartic, Serine, Cysteine, and Metalloproteases. Curr. Med. Chem. 2001, 8, 893-907.
(4) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Fairlie, D. P. Beta Strand Mimetics. Chem. Rev. 2004, 104, 6085-6118.
(5) Ghosh, A. K.; Devasamudram, T.; Hong, L.; Dezutter, C.; Xu, X.; Weerasena, V.; Koelsch, G.; Bilcer, G.; Tang, J. Structure-based design of cycloamide-urethane-derived novel inhibitors of human brain memapsin 2 (β-secretase). Bioorg. Med. Chem. Lett. 2005, 15, 15-20.
(6) Rojo, I.; Martin, J. A.; Broughton, H.; Timm, D.; Erickson, J.; Yang, H.-Ch.; McCarthy, J. R. Macrocyclic peptidomimetic inhibitors of β-secretases (BACE): First X-ray structure of a macrocyclic pepti-domimetic-BACE complex. Bioorg. Med. Chem. Lett. 2006, 16, 191195.
(7) Szewczuk, Z.; Lebholz, K. L.; Rich, D. H. Synthesis and biological activity of new conformationally restricted analogs of pepstatin. Int. J. Pept. Protein Res. 1992, 40, 233-242.
(8) Grubbs, R. H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 1998, 54, 44134450.
(9) Garner, P.; Ramakanth, J. Stereodivergent synthesis of threo and erythro 6-amino-6-deoxyheptosulose derivatives via an optically active oxazolidine aldehyde. J. Org. Chem. 1986, 51, 2609-2612.
(10) Kokotos, C.; Chiou, A. Convenient Synthesis of Benzyl and Allyl Esters Using Benzyl and Allyl 2,2,2-Trichloroacetimidate. Synthesis 1997, 168-170.
(11) Sasmal, S.; Geyer, A.; Maier, M. E. Synthesis of Cyclic Peptidomimetics from Aldol Building Blocks. J. Org. Chem. 2002, 67, 6260-6263.
(12) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. Application of RingClosing Metathesis to the Synthesis of Rigidified Amino Acids and Peptides. J. Am. Chem. Soc. 1996, 118, 9606-9614.
(13) Lee, C. W.; Grubbs, R. H. Stereoselectivity of Macrocyclic RingClosing Olefin Metathesis. Org. Lett. 2000, 2, 2145-2147.
(14) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953-956.
(15) Walker, M. A.; Johnson, T. General method for the synthesis of cyclic peptidomimetic compounds. Tetrahedron Lett. 2001, 42, 5801-5804.
(16) Lambert, J. N.; Mitchell, J. P.: Roberts, K. D. The synthesis of cyclic peptides. J. Chem. Soc., Perkin I 2001, 471-484.
(17) Mosberg, H. I.; Omnaas, J. R. Dithioether-containing cyclic peptide. J. Am. Chem. Soc. 1985, 107, 2986-2987.
(18) Kemp, D. S.; Carey, R. I. Boc-1-Dmt-OH as a fully N, S-blocked cysteine derivative for peptide synthesis by prior thiol capture. Facile conversion of N -terminal Boc-1-Dmt-peptides to $\mathrm{H}-\mathrm{Cys}(\mathrm{Scm})$-peptides. J. Org. Chem. 1989, 54, 3640-3646.
(19) Mitsunobu, O. The Use of Diethyl Azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981, 1-28.
(20) Tsunoda, T.; Yamamiya, Y.; Ito, S. 1,1'-(Azodicarbonyl)dipiperidinetributylphosphine, a new reagent system for Mitsunobu reaction. Tetrahedron Lett. 1993, 34, 1639-1642.
(21) Corrie, J. E. T.; Hlubucek, J. R.; Lowe, G. Synthesis of a cephalosporin analogue. J. Chem. Soc., Perkin Trans. I 1977, 14211425.
(22) Hong, L.; Turner, R. T.; Koelsch, G.; Shin, D.; Ghosh, A. K.; Tang, J. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 2002, 41, 10963-10967.
(23) Turner, R. T.; Koelsch, G.; Hong, L.; Castaheira, P.; Ghosh, A. K.; Tang, J. Subsite specificity of memapsin 2 (β-secretase): implications in inhibitor design. Biochemistry 2001, 40, 10001-10006.
(24) Ghosh, A. K.; Bilcer, G.; Harewood, C.; Kawahama, R.; Shin, D.; Hussain, K. A.; Hong, L.; Loy, J. A.; Nguyen, C.; Koelsch, G.; Ermolieff, J.; Tang, J. Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase). J. Med. Chem. 2001, 44, 2865-2868.
(25) Tang, J.; Ghosh, A. K.; Hong, L.; Koelsch, G.; Turner, R. T. III; Chang, W. Study of memapsin 2 (β-Secretase) and Strategy of Inhibitor Design. J. Mol. Neurosci. 2003, 20, 299-304.
(26) Turner, R. T., III; Hong, L.; Koelsch, G.; Ghosh, A. K.; Tang, J. Structural locations and functional roles of new subsites $\mathrm{S}_{5}, \mathrm{~S}_{6}$, and S_{7} in memapsin 2 (β-secretase). Biochemistry 2005, 44, 105-112.
(27) Hanessian, S.; Yun, H.; Hou, Y.; Yang, G.; Bayrakdarian, M.; Therrien, E.; Moitessier, N.; Roggo, S.; Veenstra, S.; TintelnotBlomley, M.; Rondeau, J. M.; Paganetti, P.; Neumann, U.; Betschart, C. Structure-based design, synthesis, and BACE inhibitory activity of carbocyclic and heterocyclic peptidomimetics. J. Med. Chem. 2005, 48, 5175-5190.
(28) Hanessian, S.; Hou, Y.; Bayrakdarian, M.; Tintelnot-Blomley, M. Stereoselective synthesis of constrained oxacyclic hydroxyethylene isosteres of aspartic protease inhibitors: Aldol and Mukaiyama aldol methodologies for branched tetrahydrofuran 2-carboxylic acids. J. Org. Chem. 2005, 70, 6735-6745.
(29) Hanessian, S.; Yun, H.; Hou, Y. Stereoselective synthesis of constrained azacyclic hydroxyethylene isosteres as aspartic protease inhibitors-Dipolar cycloaddition and related methodologies toward branched pyrrolidine and pyrrolidinone carboxylic acids. J. Org. Chem. 2005, 70, 6746-6756.
(30) Fernandez, M. M.; Diez, A.; Rubiralta, M.; Montenegro, E.; Casamitjana, N.;Kogan, M. J.; Giralt, E. Spirolactams as conformationally restricted pseudopeptides: Synthesis and conformational analysis. J. Org. Chem. 2002, 67, 7587-7599.
(31) Strekowski, L.; Visnick, M.; Battiste, M. A. Resolution and assignment of absolute configuration to the enantiomers of anastrephin and epianastrephin and their analogs. J. Org. Chem. 1986, 51, 48364839.
(32) See Supporting Information.
(33) Wilkinson, T. J.; Stehle, N. W.; Beak, P. Enantioselective syntheses of 2-alkyl- and 2,6-dialkylpiperidine alkaloids: Preparations of the hydrochlorides of $(-)$-coniine, $(-)$-solenopsin A, and (-)-dihydropinidine. Org. Lett. 2000, 2, 155-158.
(34) Schuster, M. C.; Mann, D. A.; Buchholz, T. J.; Johnson, K. M.; Thomas, W. D.; Kiessling, L. L. Parallel synthesis of glycomimetic libraries: Targeting a C-type lectin. Org. Lett. 2003, 5, 1407-1410.
(35) Larsen, P. K.; Jacobsen, P.; Brehm, L.; Larsen, J. J.; Schaumburg, K. GABA agonists and uptake inhibitors designed as agents with irreversible actions. Eur. J. Med. Chem. 1980, 15, 529-535.
(36) Foti, C. J.; Comins, D. J. Synthesis and reactions of α-(trifluoromethanesulfonyloxy) enecarbamates prepared from n-acyllactams. J. Org. Chem. 1995, 60, 2656-2657.
(37) Luker, T.; Hiemstra, H.; Speckamp, W. N. Total synthesis of desoxoprosophylline: Application of a lactam-derived enol triflate to natural product synthesis. J. Org. Chem. 1997, 62, 3592-3596.
(38) Rohr, M.; Chayer, S.; Carrido, F.; Mann, A.; Taddei, M.; Wermuth, C. G. Synthesis of 2- and/or 6-methylated analogues of isoguvacine (1,2,3,6-tetrahydropyridine-4-carboxylic acid), a GABA A_{A} agonist. Heterocycles 1996, 43, 2131-2138.
(39) Ueda, T.; Irie, T.; Fukushi, K.; Ikota, N.; Namba, H.; Shinotoh, H.; Iyo, M.; Tanada, S.; Maeda, M.; Takatoku, K.; Yomoda, I.; Nagatsuka, S. Synthesis of N-methyl-3-acetoxy-4-(1-hydroxy-3-[$\left.{ }^{123} \mathrm{I}\right]$ -iodopro-2-enyl) piperidine, a novel acetylchlorine analogue. J. Labelled Compd. Radiopharm. 1999, 42 (Suppl. 1), s762-s764.
(40) Moreno-Manas, M.; Perez, M.; Pleeixats, R. Palladium-catalyzed allylation of 3-hydroxyisoxazole, 5-isoxazolone and 5-pyrazolone systems. Tetrahedron 1994, 50, 515-528.
(41) Lorthiois, E.; Marek, I.; Normant, J. F. Amino zinc enolate carbocyclization reactions. New access to polysubstituted piperidine derivatives. J. Org. Chem. 1998, 63, 566-574.
(42) Karoyan, P.; Chassaing, G. New strategy for the synthesis of 3-substituted prolines. Tetrahedron Lett. 1997, 38, 85-88.
(43) Khiari, J.; Hassine, B. B.; Gravel, D. Méthodologie de synthèse des analogues à chaines ouvertes de l'huperzine A. C. R. Acad. Sci. Paris, Chim. 2001, 4, 705-710.
(44) Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 1983, 48, 4155-4156.
(45) Sato, Y.; Takimoto, M.; Mori, M. Total synthesis of prostaglandin $\mathrm{F}_{2} \alpha$ via nickel-promoted stereoselective cyclization of 1,3-diene and aldehyde. Synlett 1997, 734-736.
(46) Gosh, A. K.; Tang, J. J.; Bilcer, G.; Chang, W.; Hong, L.; Koelsch, G. E.; Loy, J. A.; Turner, R. T., III; Devasumadran, T. Compounds which inhibit beta-secretase activity and methods of use thereof. U.S. Pat. Appl. $20040121947,2004$.

JM060154A

[^0]: * Corresponding author. Tel (514) 343-6738. Fax (514) 343-5728. E-mail: stephen.hanessian@umontreal.ca.
 † Université de Montréal.
 $\stackrel{\text { Novartis Institutes for BioMedical Research. }}{ }$

